|
[1]2011 ITRS roadmap; [Online]. Available: http://www.itrs.net/ [2]N. Verma, Analysis towards minimization of total SRAM energy over active and idle operating modes, IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 19, no. 9, pp. 1695-1703, Sep. 2011. [3]M. Qazi, M. E. Sinangil, and A. P. Chandrakasan, Challenges and directions for low-voltage SRAM, IEEE Design & Test of Computers, vol. 28, no. 1, pp. 32-43, Feb. 2011. [4]G. Gammie, A. Wang, H. Mair, R. Lagerquist, M. Chau, P. Royannez, S. Gururajarao, and U. Ko, SmartReflex power and performance management technologies for 90 nm, 65 nm, and 45 nm mobile application processors, Proceedings of the IEEE, vol. 98, no. 2, pp. 144-159, Feb. 2010. [5]G. Chen, S. Hanson, D. Blaauw, and D. Sylvester, Circuit design advances for wireless sensing applications, Proceedings of the IEEE, vol. 98, no. 11, pp. 1808-1827, Nov. 2010. [6]A. Keshavarzi, S. Narendra, S. Borkar, C. Hawkins, K. Royi, and V. De, Technology scaling behavior of optimum reverse body bias for standby leakage power reduction in CMOS IC's, in Proc. Int. Symp. Low Power Electronics and Design (ISLPED), 1999, pp. 252-254. [7]K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, Drowsy caches: simple techniques for reducing leakage power, in Proc. Int. Symp. Computer Architecture (ISCA), 2002, pp. 148-157. [8]K. Kanda, T. Miyazaki, S. Min Kyeong, H. Kawaguchi, and T. Sakurai, Two orders of magnitude leakage power reduction of low voltage SRAMs by row-by-row dynamic vdd control (RRDV) scheme, in Proc. Int. ASIC/SOC Conf. (ASIC), 2002, pp. 381-385. [9]F. Hamzaoglu, K. Zhang, Y. Wang, H. J. Ahn, U. Bhattacharya, Z. Chen, Y. G. Ng, A. Pavlov, K. Smits, and M. Bohr, A 3.8 GHz 153 Mb SRAM design with dynamic stability enhancement and leakage reduction in 45 nm high-k metal gate CMOS technology, IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 148-154, Jan. 2009. [10]R. K. Krishnamurthy, A. Alvandpour, S. Mathew, M. Anders, V. De, and S. Borkar, High-performance, low-power, and leakage-tolerance challenges for sub-70nm microprocessor circuits, in Proc. European Solid-State Circuits Conf. (ESSCIRC), 2002, pp. 315-321. [11]H. Qin, Y. Cao, D. Markovic, A. Vladimirescu, and J. Rabaey, SRAM leakage suppression by minimizing standby supply voltage, in Proc. Int. Symp. Quality Electronic Design (ISQED), 2004, pp. 55-60. [12]Y. Wang, U. Bhattacharya, F. Hamzaoglu, P. Kolar, Y. G. Ng, L. Q. Wei, Y. Zhang, K. Zhang, and M. Bohr, A 4.0 GHz 291 Mb voltage-scalable SRAM design in a 32 nm high-k + metal-gate CMOS technology with integrated power management, IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 103-110, Jan. 2010. [13]A. Agarwal, H. Li, and K. Roy, A single-vt low-leakage gated-ground cache for deep submicron, IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 319-328, Feb. 2003. [14]M. Khellah, D. Somasekhar, Y. Ye, N. S. Kim, J. Howard, G. Ruhl, M. Sunna, J. Tschanz, N. Borkar, F. Hamzaoglu, G. Pandya, A. Farhang, K. Zhang, and V. De, A 256-Kb dual-vcc SRAM building block in 65-nm CMOS process with actively clamped sleep transistor, IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 233-242, Jan. 2007. [15]Y. Wang, H. J. Ahn, U. Bhattacharya, Z. Chen, T. Coan, F. Hamzaoglu, W. M. Hafez, C. H. Jan, P. Kolar, S. H. Kulkarni, J. F. Lin, Y. G. Ng, I. Post, L. Q. Wei, Y. Zhang, K. Zhang, and M. Bohr, A 1.1 GHz 12 uA/Mb-leakage SRAM design in 65 nm ultra-low-power CMOS technology with integrated leakage reduction for mobile applications, IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 172-179, Jan. 2008. [16]K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli, Y. Wang, B. Zheng, and M. Bohr, SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction, IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 895-901, Apr. 2005. [17]K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits, Proceedings of the IEEE, vol. 91, no. 2, pp. 305-327, Feb. 2003. [18]C. H. Hua, T. S. Cheng, and W. Hwang, Distributed data-retention power gating techniques for column and row co-controlled embedded SRAM, in Proc. Int. Workshop Memory Technology, Design, and Testing (MTDT), 2005, pp. 129-134. [19]R. A. Abdallah, P. S. Shenoy, N. R. Shanbhag, and P. T. Krein, System energy minimization via joint optimization of the DC-DC converter and the core, in Proc. Int. Symp. Low Power Electronics and Design (ISLPED), 2011, pp. 97-102. [20]A. C. Cabe, Z. Qi, and M. R. Stan, Stacking SRAM banks for ultra low power standby mode operation, in Proc. Design Automation Conf. (DAC), 2010, pp. 699-704. [21]Y. Choi, N. Chang, and T. Kim, DC-DC converter-aware power management for low-power embedded systems, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 8, pp. 1367-1381, Aug. 2007. [22]Y. Pu, X. Zhang, J. Huang, A. Muramatsu, M. Nomura, K. Hirairi, H. Takata, T. Sakurabayashi, S. Miyano, M. Takamiya, and T. Sakurai, Misleading energy and performance claims in sub/near threshold digital systems, in Proc. Int. Conf. Computer-Aided Design (ICCAD), 2010, pp. 625-631. [23]J. Kwong, Y. K. Ramadass, N. Verma, and A. P. Chandrakasan, A 65 nm sub-vt microcontroller with integrated SRAM and switched capacitor DC-DC converter, IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 115-126, Jan. 2009. [24]A. Nourivand, C. Wang, and M. O. Ahmad, An adaptive sleep transistor biasing scheme for low leakage SRAM, in Proc. Int. Symp. Circuits and Systems (ISCAS), 2007, pp. 2790-2793. [25]P. Geens and W. Dehaene, A dual port dual width 90nm SRAM with guaranteed data retention at minimal standby supply voltage, in Proc. European Solid-State Circuits Conf. (ESSCIRC), 2008, pp. 290-293. [26]J. Wang and B. H. Calhoun, Canary replica feedback for near-DRV standby VDD scaling in a 90nm SRAM, in Proc. Custom Integrated Circuits Conf. (CICC), 2007, pp. 29-32. [27]J. Wang and B. H. Calhoun, Techniques to extend canary-based standby VDD scaling for SRAMs to 45 nm and beyond, IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2514-2523, Nov. 2008. [28]J. Wang, A. Hoefler, and B. H. Calhoun, An enhanced canary-based system with BIST for SRAM standby power reduction, IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 19, no. 5, pp. 909-914, May. 2011. [29]C. Wu, L. Zhang, Z. Lu, Y. Ma, and J. Zheng, Leakage reduction of sub-55nm SRAM based on a feedback monitor scheme for standby voltage scaling, in Proc. Int. SoC Design Conf. (ISOCC), 2010, pp. 315-318. [30]C. Dray, N. Badereddine, and C. Chanussot, A 40nm low power SRAM retention circuit with PVT-aware self-refreshing virtual VDD regulation, in Proc. Int. Memory Workshop (IMW), 2010, pp. 1-4. [31]S. Lutkemeier and U. Ruckert, A subthreshold to above-threshold level shifter comprising a wilson current mirror, IEEE Trans. Circuits and Systems II: Express Briefs, vol. 57, no. 9, pp. 721-724, Sep. 2010. [32]S. C. Luo, C. R. Huang, and L. Y. Chiou, Minimum convertible voltage analysis for ratioless and robust subthreshold level conversion, in Proc. Int. Symp. Circuit and Systems (ISCAS), 2012, pp. 2553-2556. [33]N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th ed.: Addison-Wesley, 2011. [34]A. Pavlov and M. Sachdev, CMOS SRAM Circuit Design and Parametric Test in Nano-Scaled Technologies: Springer, 2008. [35]E. Seevinck, F. J. List, and J. Lohstroh, Static-noise margin analysis of MOS SRAM cells, IEEE J. Solid-State Circuits, vol. 22, no. 5, pp. 748-754, Oct. 1987.
|