跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 02:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳瑋承
研究生(外文):Wei-ChengChen
論文名稱:以有限元素法分析硬焊製程殘留應力
論文名稱(外文):Study on Residual Stress in Braze Process Using Finite Element Method
指導教授:陳鐵城
指導教授(外文):Tei-Chen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:有限元素法硬焊熱應力
外文關鍵詞:FEMBrazethermal stress
相關次數:
  • 被引用被引用:1
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近代以來高強度異種材料之間的接合技術需求增加,硬焊製程是未來焊接工業中非常重要的方法,而本研究使用有限元素法模擬硬焊製程可能產生的熱應力與殘留應力,對於鈦合金與不同母材之間的硬焊製程進行研究,並與實驗結果相比對,結果顯示有限元素法的確可以做為硬焊實驗前的預測方法,預先了解熱膨脹係數差異所形成的殘留應力是否可能破壞焊道,減少實驗上不必要的花費。
硬焊殘留應力的形成源自於材料之間的熱膨脹係數不同,模擬結果顯示母材與焊道之間的殘留應力與材料本身關係較大,如熱膨脹係數差異小(如鈦合金與純鈮)的母材搭配,殘留應力雖然集中於焊道,但是並不足以破壞焊道,但是熱膨脹係數差異大(如鈦合金與304不鏽鋼)的母材搭配,焊道強度若是不足便會被殘留應力所破壞,所以需要使用強度較高的焊料。而小幅度改變工件形狀的設計並不會有效地影響殘留應力,改變焊料或是母材的搭配影響殘留應力較為明顯。

Brazing is one of the most important process to join two different materials together in industrial applications . In this thesis , finite element code ANSYS is adopted to investigate the transient distributions of temperature and stress during and after brazing process . Two typical cases are studied and analyzed . Moreover , distributions of residual stress are evaluated . It is found that the location of maximum von Moses stress is almost consistent to location of failure which shows that the simulation model can be used to estimate the availability of the specific brazing process .
It is found that transient and residual stresses are mainly attributed to the uniform distribution of temperature and mismatched coefficients of thermal expansion between two joined materials . For instance , the discrepancy in thermal expansion coefficients between Ti-6Al-4V and stainless steel is greater than that between Ti-6Al-4V and Nb . Consequently , the residual stress induced in the latter is smaller than the former . In addition , changes in the size and shape of two joined materials have little influence on the residual stress .

摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目標 3
1-4 文獻回顧 3
1-5 本文架構 7
第二章 相關理論背景 8
2-1 有限元素法簡介 8
2-1-1 建模前準備 8
2-1-2 求解前準備 8
2-1-3 分析結果判斷 9
2-1-4 模擬流程 9
2-2 焊接簡介 9
2-2-1 一般焊接(welding) 10
2-2-2 軟焊(solding) 10
2-2-3 硬焊(brazing) 11
2-2-3-1 爐體硬焊(furnace brazing) 12
2-2-3-2 紅外線硬焊(infrared brazing) 12
2-2-4 填充金屬(filler metal) 14
2-2-4-1 純銀金屬(Ag) 15
2-2-4-2 銀基焊料(Ag-based alloy) 15
2-2-5 母材(base metal) 17
2-2-5-1 鈦合金(Ti-6Al-4V) 17
2-2-5-2 304不鏽鋼(304stainless steel) 18
2-2-5-3 純鈮金屬(pure Niobium) 18
2-2-6 潤濕性(wettability) 19
2-3 熱傳遞學 20
2-3-1 等效熱對流係數 21
2-3-2 熱應力-應變關係 23
第三章 模擬結果 27
3-1 基本假設 27
3-2 模擬驗證 27
3-2-1 熱傳模型 27
3-2-2 應力模型 29
3-3 模型建立 30
3-3-1 Ti-6Al-4V/Ag/304SS 30
3-3-2 Ti-6Al-4V/Ag/Nb 31
3-4 Ti-6Al-4V/Ag/304SS 33
3-4-1 熱傳模型 33
3-4-2 應力模型 35
3-4-2-1 增加焊道厚度 37
3-4-2-2 縮短材料寬度 37
3-4-2-3 更換適當的材料 38
3-5 Ti-6Al-4V/Ag/Nb 48
3-5-1 熱傳模型 48
3-5-2 應力模型 50
第四章 結論與未來展望 62
4-1 結論 62
4-2 未來展望 63
參考文獻 65
附錄A 67
附錄B 71
自述 75

[1]莊達人, 基礎IC技術-應用、設計與製造, 全威圖書有限公司, 2009.
[2]U. S. D. o. Energy, Annual Energy Outlook 2011, 2010.
[3]C. C. Liu, et al., The microstructural observation and wettability study of brazing Ti-6Al-4V and 304 stainless steel using three braze alloys, Journal of Materials Science, vol. 37, pp. 2225-2235, Jun 2002.
[4]邱垂昌, 銀基填料對高熵合金真空硬銲特性之研究, 國立交通大學在職專班精密與自動化工程組碩士論文, 2005.
[5]杜宥泉, Ti-6Al-4V紅外線真空硬焊研究, 國立東華大學材料科學研究所 碩士論文, 2006.
[6]Y. C. Du and R. K. Shiue, Infrared brazing of Ti-6Al-4V using two silver-based braze alloys, Journal of Materials Processing Technology, vol. 209, pp. 5161-5166, Jun 2009.
[7]廖大維, 高熔點金屬紅外線硬焊之研究, 國立東華大學材料科學研究所,博士論文, 2007.
[8]杜國印, 硬銲型板式熱交換器疲勞實驗與分析, 成大工程科學所碩士論文, 2005.
[9]Q. Y. Xie and X. A. Ling, Numerical Analysis of Residual Stress for Copper Base Brazed Stainless Steel Plate-Fin Structure, Journal of Materials Engineering and Performance, vol. 19, pp. 611-615, Jul 2010.
[10]W. C. Jiang, et al., Numerical modelling and nanoindentation experiment to study the brazed residual stresses in an X-type lattice truss sandwich structure, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 528, pp. 4715-4722, May 2011.
[11]S. Moaveni, Finite Element Analysis, Pearson Education, 2003.
[12]W. H. Kearns, Welding handbook-v. 2. Welding processes: arc and gas welding and cutting, brazing and soldering, American Welding Society, 1984.
[13]G. Humpston, Principles of soldering and brazing, ASM International, 1993.
[14]M. G. Nicholas, Joining processes : introduction to brazing and diffusion bonding, Kluwer Academic Publishers, 1998.
[15]Y. S. Touloukian, Thermophysical properties of matter v. 1. Thermal conductivity: metallic elements and alloys, IFI/Plenum, 1970.
[16]Y. S. Touloukian, Thermophysical properties of matter v. 4. Specific heat: metallic elements and alloys, IFI/Plenum, 1970.
[17]Y. S. Touloukian, Thermophysical properties of matter v. 12. Thermal expansion: metallic elements and alloys, IFI/Plenum, 1970.
[18]A. Wolfenden and M. R. Harmouche, ELASTIC-CONSTANTS OF SILVER AS A FUNCTION OF TEMPERATURE, Journal of Materials Science, vol. 28, pp. 1015-1018, Feb 1993.
[19]ASM handbook v. 2. Properties and selection--nonferrous alloys and special-purpose Materials Park, 1990.
[20]陳鐵城, 有限單元法與拉式轉換法在廣義耦合暫態熱彈性問題的應用, 成大機械所博士論文, 1988.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊