跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 04:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王譯賢
研究生(外文):Yi-HsienWang
論文名稱:相變化材料於可攜式電子零件冷卻之數值模擬
論文名稱(外文):Numerical Simulation of Portable Electronic Cooling Using Phase Change Material
指導教授:楊玉姿楊玉姿引用關係
指導教授(外文):Yue-Tzu Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:76
中文關鍵詞:電子冷卻數值模擬相變化材料兩相流流體體積法(VOF)
外文關鍵詞:Electronic coolingNumerical simulationPhase change materialTwo phases flowVOF (Volume of Fluid)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:403
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一混合型相變化材料散熱片,應用於暫態三維熱傳模擬之冷卻技術。熱源由散熱鰭片底面的加熱片傳送至數值計算空間。在散熱鰭片的空穴中置入熱儲特性的相變化材料正二十烷(N-eicosane)。整體的計算模型之統御方程式是利用控制體積法配合有限差分法與冪次法則來描述熱傳模擬系統。因熱傳造成的融化邊界糊狀區(mushy zone),應用焓似孔隙率(enthalpy-porosity like) 的數值計算技術以預測物理模型於相變化材料區域間的固液混合模式相變化。此外,因相變化材料PCM的體積膨脹的差異變密度是應用體積變量模型 (VOF)描述相變化材料與空氣間隙的邊界。
在此研究中,規劃數值計算變數有不同熱源的功率變化(2W- 4W),不同方向的操作測試(垂直/水平/傾斜),於充電和放電模式下的物理狀態。為了得到更精確的數值預測,計算時間步伐 (0.03秒, 0.05秒與 0.07秒) 也在文中加以討論暫態的準確性。本次研究所發展的理論模型與數值預測值,與文獻中可用的實驗數據作驗證比對。數值計算結果顯示,探討的暫態表面溫度與實驗的最大誤差在10.2%內為合理的預測誤差範圍。
研究的數值計算亦包括不同散熱鰭片數之熱性能與流場分布之比較(0,3和6鰭片)。加入相變材料可延長相變材料的熔化時間,混合型多鰭片散熱器可控制較佳的操作溫度分布。本研究發現1.不同操作方向對系統散熱影響有限 (2℃以內的變化),2.融化比在0.9以下可將溫度控制在320K以內,3.網格獨立與實驗讀值最大誤差為10.2%,4.鰭片影響係數(Fe)顯示鰭片數6的設置下,可以提供較佳系統溫控狀態,本研究有助於探索新的混合高效冷卻系統於相同的操作溫度下之比對,本次研究結果可以提供未來開發相同幾何形狀和熱源分布之研究參考。

This dissertation explores transient three-dimensional heat transfer simulations of a hybrid PCM (Phase Change Material) based heat sink using numerical cooling technique. Thermal energy is transferred to the calculation domain through the base of heat sink. The N-eicosane is adapted as the role of latent heat storage with PCM to place inside heat sink cavity. The governing equations of melting model are solved by a control-volume-based finite-difference method with a power-law scheme to describe the heat transfer of the simulation system. The melting mushy zone boundary is predicted by an enthalpy-porosity like numerical approach due to the phase change of heat transfer, which is employed to transform the physical latent heat phase change domain from solid PCM to liquid mode. In addition, the PCM-air VOF (volume of fluid) model is adapted to solve PCM-air gap boundary which is caused by PCM’s volume expansion for the difference of variable density.
In this study, numerical computations are conducted with various power levels (2W-4W), different orientation tests (vertical/horizontal/slanted), and various modes (charge / discharge). For further precise prediction, the calculating time step (0.03s, 0.05s, and 0.07s) size is discussed in the literature for transient accuracy as well. The developed theoretical model is validated by comparing numerical predictions with the available experimental data in the literature. The numerical results show that the transient surface temperatures are reasonably predicted with a maximum discrepancy of 10.2%. The present numerical computations also include the comparison of thermal performance and fluid fill with different amounts of fins (0, 3 and 6 fins). Through this study, it is found 1. The test of orientation shows limited effect on the thermal performance of the system (within 2℃). 2. Hybrid system using PCM (N-eicosane) can be well controlled under 320K if the melting ratio is under 0.9. 3. A maximum discrepancy of grid independence is within 10.2% between present and experimental data. 4. From Fe (Fin effect), the heat transfer performance with 6 fins provides better thermal control. The suitable fins arrangements can provide the system better heat dissipation status which help to explore new hybrid efficiently cooling system under same operation temperature. Therefore present results could provide the future exploitation based on the same geometric and heat source distribution.

摘要 I
Abstract II
Acknowledgments IV
List of Figures IX
List of Tables X
Chapter 1 Introduction 1
1.1 Background 1
1.2 Paper Review 4
1.2.1 Experimental Work of PCM 4
1.2.2 Numerical Work of PCM 6
1.3 Objectives and Motivation of Present Study 11
Chapter 2 Mathematical Formulation 12
2.1 Physical Model 12
2.1.1 Case A without Fin Heat Sink 12
2.1.2 Case B and Case C with 3 and 6 Fins Heat Sink 13
2.2 Governing Equations 19
2.3 The Boussinesq Relation 22
2.4 Boundary Conditions 22
Chapter 3 Numerical Simulation 26
3.1 Discretization Approach 27
3.1.1 Finite Volume Method 27
3.1.2 Discretization of the Governing Equations 27
3.2 Velocity-Pressure Coupling 32
3.3 Iterative Solution Method 33
3.4 Convergence Criterion 33
Chapter 4 Results and Discussions 35
4.1 Verification 35
4.1.1 Grid Independence 35
4.1.2 Time Step Validation 39
4.1.3 Power Level Validation 39
4.2 Transient Performance of Charge and Discharge Modes 40
4.3 Effect of Orientation on PCM-Based Heat Sink Performance 41
4.4 Flow Characteristics and Heat Transfer Performance in Case A 43
4.5 Two Phase PCM-Air Boundary Performance 44
4.6 Flow Characteristics and Heat Transfer Performance in Case A, B and C 44
4.7 PCM Exploitation 45
4.8 Density Variation of PCM and Air 45
4.9 Fin Effect of Calculation System 46
Chapter 5 Conclusions 67
References 69
Vita 73

[1]Z. Belen, Jose M-Mar, L. F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering 23 (2003) 251–283.
[2]F.L. Tan , C.P. Tso, Cooling of mobile electronic devices using phase change materials, Applied Thermal Engineering 24 (2004) 159–169.
[3]H. Mehling and L.F. Cabeza, Heat and cold storage with PCM, ISBN: 978-3-540-68556-2
[4]G. Setoh, F.L. Tan, S.C. Fok, Experimental studies on the use of a phase change material for cooling mobile phones, Int. Comm. in Heat and Mass Transfer 37 (2010) 1403–1410.
[5]C.J. Ho, R. Viskanta, Heat transfer during melting from an isothermal vertical wall, ASME J. Heat Transfer 106 (1984) 12-19.
[6]K. Lafdi, O. Mesalhy, A. Elgafy, Merits of employing foam encapsulated phase change materials for pulsed power electronics cooling applications, J. Electronic Packaging 130 (2008) 021004.
[7]W. Humphries, E. Griggs, A design handbook for phase change thermal control and energy storage devices, NASA Technical Paper 1074, NASA Scientific and Technical Information Office. (1977).
[8]H. Tan, Y. Li, H. Tuo, M. Zhou, B. Tian, Experimental study on liquid/solid phase change for cold energy storage of Liquefied Natural Gas (LNG) refrigerated vehicle, Energy 35 (2010) 1927-1935.
[9]C.W. Chan, F.L. Tan, Solidification inside a sphere—an experimental study, Int. Comm. in Heat and Mass Transfer 33 (2006) 335–341.
[10]K.A.R. Ismail, J.R. Henriquez, Thermal effective windows with moving phase change material curtains, Applied Thermal Engineering 21 (2001) 1909–1923.
[11]P.W. Griffiths and P.C. Eames, Performance of chilled ceiling panels using phase change, Applied Thermal Engineering 27 (2007) 1756–1760.
[12]S.C. Fok, W. Shen, F.L. Tan, Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int. J. of Thermal Sciences 49 (2010) 109-117.
[13]A. Pasupathy, L. Athanasius, R. Velraj, R.V. Seeniraj, Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management material slurries as the heat transport medium, Applied Thermal Engineering 28 (2008) 556–565.
[14]C.J. Ho, S.Y. Chiu and J.F. Lin, Heat transfer characteristics of a rectangular natural circulation loop containing solid-liquid phase-change material suspensions, Int. J. Numerical Methods for Heat and Fluid Flow 15 (2005) 441-461.
[15]X. Duan, G.F. Naterer, Heat transfer in phase change materials for thermal management of electric vehicle battery modules, Int. J. of Heat and Mass Transfer 53 (2010) 5176–5182.
[16]J. Wei, Y. Kawaguchi, S. Hirano, H. Takeuchi, Study on a PCM heat storage system for rapid heat supply, Applied Thermal Engineering 25 (2005) 2903–2920.
[17]J.M. Khodadadi, Y. Zhang, Effects of buoyancy-driven convection on melting within spherical containers, Int. J. of Heat and Mass Transfer 44 (2001) 1605-1618.
[18]L. Huang, M. Petermann, C. Doetsch, Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications, Energy 34 (2009) 1145-1155.
[19]M. A. Medina, J. B. King, M. Zhang, On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs), Energy 33 (2008) 667–678.
[20]R. Velraj, R. V. Seeniraj, B. Hafner, C. Faber and K. Schwarzer, Heat transfer enhancement in a latent heat storage system, Solar Energy 65 (1999) 171–180.
[21]R. Velraj, R. V. Seeniraj, B. Hafner, C. Faber and K. Schwarzer, Experimental analysis and numerical modeling of inward solidification on a finned vertical tube for a latent heat storage unit, Solar Energy 60 (1997) 281-290.
[22]D. Pal, Y.K. Joshi, Melting in a side heated tall enclosure by a uniformly dissipating heat source, Int. J. Heat and Mass Transfer 44 (2001) 375-387.
[23]E. Bellah S. Mettawee, G. M.R. Assassa, Experimental study of a compact PCM solar collector, Energy 31 (2006) 2622–2632.
[24]S.K. Roy, B.L. Avanic, Laminar forced convection heat transfer behavior of a phase change material fluid in finned tubes, International Communications in Heat Mass Transfer 24 (1997) 653-662.
[25]V. Shatikian, G. Ziskind, R. Letan, Numerical investigation of a PCM-based heat sink with internal fins, Int. J. Heat Mass Transfer 48 (2005) 3689-3706.
[26]M. Faraji, H. EL Qarnia, and El Khadir Lakhal, Thermal analysis of a phase change material based heat sink for cooling protruding electronic chips, J. Thermal Science 18 (2009) 268−275.
[27]R. Kandasamy, X. Wang, A. S. Mujumdar, Application of phase change materials in thermal management of electronics, Applied Thermal Energy 27 (2007) 2822-2832.
[28]S. Krishnan and S. V. Garimella, Analysis of a phase change energy storage system for pulsed power dissipation, IEEE Transactions on components and packaging technologies 27 (2004) 191-199.
[29]E. M. Alawadhi, Thermal management of blocks in a channel using phase change material, IEEE Transactions on components and packaging technologies 32 (2009) 89-99.
[30]P. Lamberg, K. Siren, Analytical model for melting in a semi-infinite PCM storage with an internal fin, Heat and Mass Transfer 29 (2003)167–176.
[31]R. Akhilesh, A. Narasimhan , C. Balaji, Method to improve geometry for heat transfer enhancement in PCM composite heat sinks, Int. J. Heat and Mass Transfer 48 (2005) 2759–2770.
[32]Z. Xiang Gong, A. S. Mujumdar, Cyclic heat transfer in a novel storage unit of multiple phase change materials, Applied Thermal Engineering 16 (1996) 807-815.
[33]M.J. Huang, P.C. Eames, B. Norton, Comparison of a small-scale 3D PCM thermal control model with a validated 2D PCM thermal control model, Solar Energy Materials & Solar Cells 90 (2006) 1961–1972.
[34]X. Wang, A. S. Mujumdar , C. Yap, Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electric components, International Communications in Heat and Mass Transfer 34 (2007) 801–808.
[35]A.D. Brent, V.R. Voller, K.J. Reid, Enthalpy-porosity technique for modeling convection–diffusion phase change: application to the melting of a pure metal, Numer. Heat Transfer 13 (1998) 297–318.
[36]J. Fukai, Y.Hamada, Y. Morozumi, O. Miyatake, Effect of carbon-fiber brushes on conductive heat transfer in phase change materials Int. J. of Heat and Mass Transfer 45 (2002) 4781–4792.
[37]B. Zivkovic and I. Fujii, An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers, Solar Energy 70 (2001) 51–61.
[38]V. R. Voller, An enthalpy method for convection/diffusion phase change, International Journal for Numerical Methods in Engineering 24 (1987) 271-284.
[39]K.C. Nayak, S.K. Saha, K. Srinivasan, P. Dutta, A numerical model for heat sinks with phase change materials and thermal conductivity enhancers, Int. J. Heat and Mass Transfer, 49 (2006) 1833–1844.
[40]K. Kim, K. Choi, Y. J Kim, K. H. Lee, K. S. Lee, Feasibility study on a novel cooling technique using a phase change material in an automotive engine, Energy 35 (2010) 478–484.
[41]J.V.C. Vargas and A. Bejan, Thermodynamic optimization of the match between two streams with phase change, Energy 25 (2000) 15–33.
[42]G. Ravi, J. L. Alvarado, C. Marsh and D. A. Kessler, Laminar flow forced convection heat transfer behavior of a phase change material fluid in finned tubes, Numerical Heat Transfer, Part A, 55 (2009) 721–738.
[43]Y. L. Hao, Y. X. Tao, A Numerical model for phase-change suspension flow in microchannels, Numerical Heat Transfer, Part A (2004) 46:55–77.
[44]S.K. Saha, P. Dutta, Heat transfer correlations for PCM-based heat sinks with plate fins, Applied Thermal Engineering 30 (2010) 2485-2491.
[45]E. Assis, L. Katsman, G. Ziskind, R. Letan , Numerical and experimental study of melting in a spherical shell, International Journal of Heat and Mass Transfer 50 (2007) 1790–1804.
[46]L. Royon, G. Guiffant and P. Flaud, Investigation of heat transfer in a polymeric phase change material for low level heat storage, Energy Comers. Mgmt 3 (1997) 517-524.
[47]S.M. Vakilaltojjar, W. Saman, Analysis and modeling of a phase change storage system for air conditioning applications, Applied Thermal Engineering 21 (2001) 249-263.
[48]B. He, V. Martin, F. Setterwall, Phase transition temperature ranges and storage density of paraffin wax phase change materials, Energy 29 (2004) 1785–1804.
[49]F. Xu, D. Y. Goswami, Thermodynamic properties of ammonia–water mixtures for power-cycle applications, Energy 24 (1999) 525–536.
[50]P. Lamberg, K. Siren, Analytical model for melting in a semi-infinite PCM storage with an internal fin, Heat and Mass Transfer 39 (2003) 167–176.
[51]Z. X. Gong, A. S. Mujumdar, Cyclic heat transfer in a novel storage unit of multiple phase change materials, Applied Thermal Engineering 16 (1996) 807-815.
[52]C.W. Chan, F.L. Tan, Solidification inside a sphere—an experimental study, International Communications in Heat and Mass Transfer 33 (2006) 335–341.
[53]M.J. Huanga,P.C. Eamesa, B. Nortonb, Comparison of a small-scale 3D PCM thermal control model with a validated 2D PCM thermal control model, Solar Energy Materials & Solar Cells 90 (2006) 1961–1972.
[54]J. Wei, Y. Kawaguchi, S. Hirano, H. Takeuchi, Study on a PCM heat storage system for rapid heat supply, Applied Thermal Engineering 25 (2005) 2903–2920.
[55]J.M. Khodadadi, Y. Zhang, Effects of buoyancy-driven convection on melting within spherical containers, International Journal of Heat and Mass Transfer 44 (2001) 1605-1618.
[56]C. W. Hirt and B. D. Nichols, Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, Journal of Computational Physics 39 (1981) 201-225.
[57]J. U. Brackbill, D. B. Kothe, and C. Zemach, A Continuum Method for Modeling Surface Tension, Journal of Computational Physics 100, 335-354 (1992)
[58]J.H. Ferziger and M. Peric Computational methods for fluid dynamics, pp.333-345.
[59]S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊