跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/08/01 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳民山
研究生(外文):Minh-SangTran
論文名稱:射出機螺桿感應加熱的實驗與分析
論文名稱(外文):Experiment and Simulation of Induction Heating System for Injection Molding Machine Barrel
指導教授:黃聖杰黃聖杰引用關係
指導教授(外文):Sheng-Jye Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:103
中文關鍵詞:感應加熱溫度均勻性電磁集中器
外文關鍵詞:Induction heatingTemperature uniformityMagnetic flux concentrator
相關次數:
  • 被引用被引用:1
  • 點閱點閱:552
  • 評分評分:
  • 下載下載:178
  • 收藏至我的研究室書目清單書目收藏:2
感應加熱方法發展至今已在成功應用於多個領域,如:硬焊、表面硬化、熱壓成形、塑膠回焊與金屬焊接等等…,而電磁感應加熱具有許多優點,如精確的溫度控制、低耗能、快速升溫速率、低污染與有效降低生產週期,基於上述理由,本文將利用電磁感應加熱方式進行螺桿與熱膠道進行加熱,以取代傳統利用電阻式加熱器,此乃為本文研究重點。
本文將著眼於使用螺線型感應加熱線圈進行射出機料管與熱膠道進行加熱,另本文亦探討在線圈加入磁場集中器之效益,以研究對整體加熱效果之影響。此外,在感應加熱模擬方面,本文使用工程分析軟體ANSYS進行感應加熱數值模擬,並與實驗作驗證比對,以探討感應加熱數值模擬之可行性。
在進行料管感應加熱與電阻式加熱實驗研究結果方面,針對感應加熱系統1~4種型態與電阻式加熱系統,其平均升溫速率分別為0.56 0C/sec、0.53 0C/sec、0.51 0C/sec、0.47 0C/sec與0.49 0C/sec,而均溫性則分別為90.88%、91.59%、90.7%、95.82%與 95.71%,而在實驗與數值分析結果比較下,針對感應加熱系統1~4種型態,其結果差異為5.93%、2.59%、2.86%與2.44%。
在進行熱膠道感應加熱實驗方面,實驗結果在進行微調控制後,其溫度均勻性有著顯著改善。針對感應加熱所使用的電流值為22.5A、18.5A與15.5A時,在改善前,均溫性為5.93%、2.59%、2.86%與2.44%,在改善後,均溫性為91.4%、91.1%與90.62%,此外,加熱速率平均約2.82 0C/sec,而在數值模擬與實驗彼此間,其均溫性差異為2.44%~6.31%。

Induction heating method has been widely used for a long time and its applications are quite popular such as brazing, surface hardening, forming, plastic reflow, soldering… Electromagnetic induction heating method has a lot of advantages such as precise temperature control, low energy consumption, high heating speed, environmental pollution limit and production cycle reduction. Based on effective heating applications of the above method, it is proposed to apply heat for injection molding machine barrel and hot runner instead of using the resistance heating method. Therefore, this method will be researched and discussed in this study.
The focal point of this thesis is to design a solenoid coil in order to heat barrel and hot runner. In another case, the magnetic flux concentrator is attached on the coil to evaluate its effect. Besides, a simulation of induction heating system using ANSYS software is also performed. Finally, the experiment results will be compared to simulation results to evaluate the feasibility of simulation method.
In experiment tests for barrel, the average heating rates were 0.56 0C/sec, 0.53 0C/sec, 0.51 0C/sec, 0.47 0C/sec and 0.49 0C/sec for induction heating type 1, 2, 3, 4 and resistance type, respectively. Similarly, the average temperature uniformities were 90.88%, 91.59%, 90.7%, 95.82% and 95.71%, respectively. In addition, the temperature uniformities difference between experiment results and simulation results also brought out many positive results. These differences were only 5.93%, 2.59%, 2.86% and 2.44% for types 1, 2, 3 and 4, respectively.
From the experiment results for hot-runner, the results after adjusting brought out more improvement and uniformity compared to the results before adjusting. The temperature uniformities were 64.9%, 66.19%, 67% before adjusting and 91.4%, 91.1%, 90.62% after adjusting for power level 22.5A, 18.5A and 15.5A, respectively. Furthermore, average heating rate could reach 2.82 0C/sec. The results of temperature uniformity differences between experiments and simulations were from 2.44% to 6.31% for 3 power levels.

Contents
摘要 I
Abstract III
Acknowledgement V
List of Tables IX
List of Figures X
List of Symbol XIII
Chapter 1 INTRODUCTION 1
1.1 Preface 1
1.2 Basic Introduction of Injection Molding 2
1.2.1 Injection Molding Process 2
1.2.2 Plastic Flow in Injection Molding Process 3
1.2.3 Injection Molding Machine Unit 4
1.2.4 Plastic Temperature in Barrel 6
1.2.5 Barrel Heat System Application 8
1.3 Literature Review and Barrel Heating 11
1.3.1 Band Heater Review 11
1.3.2 Induction Heating Review 13
1.3.3 Induction Heating Simulation by ANSYS Software 15
1.4 Research Purpose 16
1.5 Articles Outline 17
Chapter 2 THE BASIC THEORY AND PPLICATIONS OF INDUCTION HEATING 18
2.1 Induction Heating Introduction 18
2.2 Electromagnetic Characteristics of Metals 22
2.2.1 Electrical Resistivity (Electrical Conductivity) 22
2.2.2 Magnetic Permeability 24
2.2.3 Skin Effect 26
2.2.4 Electromagnetic Proximity Effect 28
2.2.5 Magnetic Flux Concentrator Effect 30
2.3 Three Modes of Heat Transfer 32
2.3.1 Conduction 32
2.3.2 Convection 34
2.3.3 Radiation 34
2.4 Mathematical Model of Induction Heating 35
2.4.1 Region of Investigation 36
2.4.2 Governing Equations 36
Chapter 3 METHOD 40
3.1 Experiment Method 40
3.1.1 Experiment equipment 40
3.1.2 Measuring Instrument 48
3.1.3 Barrel Experiment Process 50
3.1.4 Experiment Process for Hot Runner 54
3.2 Simulation Method 59
3.2.1 Introducing APDL 59
3.2.2 Method of calculation 59
3.2.3 Simulation process 60
3.3 Result Analysis 67
3.3.1 Standard Deviation 67
3.3.2 Temperature Uniformity 68
Chapter 4 RESULTS AND DISCUSSIONS 70
4.1 Results and Discussions for Induction Heating System Barrel 70
4.1.1 Results 70
4.1.2 Discussions 79
4.2 Results and Discussion for Induction Heating System Hot-Runner 82
4.2.1 Results Before Adjusting 82
4.2.2 Results After Adjusting 82
4.2.3 Discussions 88
Chapter 5 CONCLUSION AND FUTURE WORK 91
5.1 Conclusion 91
5.1.1 Heating for Barrel 91
5.1.2 Heating for Hot Runner 91
5.1.3 Simulation Working 92
5.2 Future Work 92
Reference 94
Apendix 96
A. Simulation Code for Barrel 96
B. Simulation Code for Hot Runner 99
Vita 103

[1]Herbert Rees and Bruce Ctoen, Selecting Injection Molds: Weighing Cost versus Productivity: Hanser, 2006.
[2]F. Jonhannaber, Injection Molding Machines Auser’s Guide, Chapter 1: The Injection Unit, 3rd ed.: Hanser, 1994.
[3]F. T. Bruce, W. W. Timothy, Robert Kadykowski, Efficiency Gains and Control Improvements Using Different Barrel Heating Technologies for the Injection Molding Process, 2007.
[4]C. I. Weir, Introduction to Injection Molding. Greewich: Society of Plastics Engineers, 1975.
[5]C. A. Harper, Handbook of Plastic Processes vol. Chapter 1. New Jersey: Wiley, John & Sons, 2006.
[6]J.-C. Li, Development of Electromagnetic Induction Heating System for Rapid Mold Heating, Master, Mechanical Department, National Cheng Kung University, 2010.
[7]Ke Yao and Furong Gao, Barrel Temperature Control during Operation Transition in Injection Molding, Control Engineering Practice, 2008.
[8]G. A. Campbell, Applied Polymer, Modern Plastics Encyclopedia for 1968-69 vol. Volume 13. New York: McGraw-Hill Inc, 1968.
[9]A. Whelan, Injection Moulding Machine. New York, USA: Springer, 1984.
[10]R. M. Park, Thermocouple Fundamentals. Cleveland OH, USA: Marlin Manufacturing Corp., 2005.
[11]C. Shijia, Numerical Simulation of Temperature Field in Barrel of Injection Molding Machine during Induction Heating Process Based on ANSYS Software, 2009.
[12]E. Wrona, B. Nacke, D. Resetov, 3D-Modelling of the Trasient Heating process for Induction Surface hardening, 2003.
[13]S. Moaveni, Finite Element Analysis: Theory and Application with ANSYS. New Jersey: Pretice-Hall, Inc., 1999.
[14]Release 10.0 Documentation for ANSYS: SAS IP, Inc., 2005.
[15]Matej Kranjc and Anze Zupanic, Numerical analysic and thermographic investigation of induction heating, International Journal of Heat and Mass Transfer, 2010.
[16]J. Serway, Physics for Scientists and Engineers. USA: David Harris, 2004.
[17]F. W. Curtis, High-frequency Inudction Heating. USA: McGRAW-HILL Company, Inc., 1950.
[18]l. Rudnev, Cook, Handbook of Induction Heating. New York: Marcel Dekker, 2003.
[19]V. Rudenev, An Objective Assessment of Magnetic Flux Concentrators, Heat Treating Progress, 2004.
[20]V. Rudnev and Ray Cook, Magnetic Flux Concentrators: Myths, Realities, and Profits, Metal Heat Treating, 1995.
[21]Z. m. Zhang, Nano/Microscale Heat Transfer. USA: The McGraw-Hill Companies, Inc. , 2007.
[22]L. L. Llona, D. S. Rumena, Mario Metodiev, FEM Investigation of Induction Heating System for Pipe Brazing, 2010.
[23]R. S. Ruffini. (1981). Ferrotron 559H.
[24]D. V. Rosato, Injection Molding Handbook. USA: Springer, 2000.
[25]Kaivanya Extrusion Tecnick Pvt. Ltd. (1998). Single Screw and Barrel for Extruder Machine.
[26]Release 12.1 Documentation for ANSYS: SAS IP, Inc., 2009.
[27]S. Ghahramani, Fundamentals Of Probability With Stochastic Processes. USA: Prentice Hall, 2004.
[28]Y.-T. Cai, Development of Uniform Surface Induction Heating System for Rapid Mold and Hot Runner Heating, Mechanical Department, National Cheng Kung University, Taiwan, Derpartment Engineering, 2011.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top