跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許文潔
研究生(外文):Wen-ChiehHsu
論文名稱:高溫熱環境下液滴撞擊熱板研究
論文名稱(外文):Drop Impingement onto a Plate Heated in High-Temperature Environments
指導教授:林大惠林大惠引用關係
指導教授(外文):Ta-Hui Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:92
中文關鍵詞:萊氏溫度液滴撞擊液滴回彈碎裂沸騰乳化液滴液滴微爆
外文關鍵詞:Leidenfrost temperaturedrop impactreboundbreak-upboilingemulsion dropmicro-explosion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
目前許多液滴撞擊熱板的研究均是以單一成份的流體來進行實驗,如水、烷類、醇類…等,並且大多在常溫的環境下進行研究。而水液滴在一個高溫環境下撞擊熱板表面,以及W/O乳化液滴(water in oil)在燃燒過程中撞擊熱板表面的現象則尚未有許多的研究成果。本文針對這兩個主題做探討。
本研究主要是在一個小型燃燒爐的熱環境下,以石英板為撞擊之熱板,而熱板溫度分別為Ts = 720、509與407oC,研究水與W/O乳化液滴在不同的液滴直徑(di)以及含水量(β)下,以自由落下的方式撞擊熱板。分析個別的撞擊特性以及W/O乳化液滴在燃燒過程的撞擊現象或是W/O 乳化液滴的微爆現象…等。水液滴的研究結果指出,水液滴在不同We數與熱板溫度的撞擊型態可分為四個區域:液滴回彈、碎裂、沸騰後碎裂和沸騰後碎裂有水膜。影響液滴撞擊現象區域變化的參數主要是熱板溫度,其次是液滴直徑。
W/O乳化液滴的研究結果指出,W/O乳化液滴撞擊型態受熱板溫度(Ts)與含水量(β)很大的影響,而液滴直徑(di)的變化則不影響撞擊型態。微爆現象的結果則顯示,所有W/O乳化液滴在撞擊熱板後所碎裂的小液滴,均會在熱板的下游處發生微爆的現象,然而只有部分的W/O乳化液滴在撞擊熱板碎裂後,回縮聚集而成的液滴會發生微爆。

Past research of drop impact on a hot surface was mostly limited to a single-phase drop (water, alkane, alcohol, etc) in a room temperature environment. There was not much research concerning the phenomena of a water drop in a convective high-temperature gaseous environment or a W/O (water in oil) emulsion drop in the combustion process impinging on a heated solid plate. This study was emphasized on the phenomena and features of these two subjects.
In this experiment, a smooth quartz plate, which acted as the solid surface was inserted into a small combustion chamber in a high-temperature gaseous flow at three different positions and the surface temperature of the plate was 720, 509 or 407oC. Water or W/O emulsion drops with different diameters (di) and water proportions (β) which fell freely and impinged onto the heated solid plate were observed.
The results of water drop experiments showed that the impact types of water drop varying with different Weber numbers and hot surface temperatures can be classified into four regimes: Rebound, Break-up, Boiling Break-up, and Boiling Break-up with water film. And the main parameter affecting the impact regimes was the hot surface temperature; the drop diameter was secondary.
The results of W/O emulsion drop experiments indicated that the impact types of W/O emulsion drop were significantly affected by the hot surface temperature (Ts) and water proportion (β), but not by the change of drop diameters (di). The results of micro-explosion observations showed that the small droplets from the disintegration of W/O emulsion drops micro-exploded in the downstream region of the hot surface for all cases investigated. However, the micro-explosion of the droplets on the heated surface from contraction of the W/O emulsion drop only occurred for some cases.

總目錄.....................................................I
表目錄.....................................................Ⅲ
圖目錄.....................................................Ⅳ
符號說明...................................................Ⅷ
第一章、緒論................................................1
1-1 前言...................................................1
1-2 研究動機與目的..........................................2
1-3 研究方法................................................2
第二章、文獻回顧.............................................3
2-1 液滴撞擊固體熱表面現象...................................3
2-2 乳化燃料燃燒特性........................................11
第三章、實驗設備與方法......................................17
3-1 供液系統...............................................17
3-2 液滴產生系統...........................................18
3-3 小型燃燒爐與觀測系統....................................18
3-4液滴在高溫環境的We數估算.................................20
3-4-1 水液滴We計算.........................................20
3-4-2 W/O乳化液滴We計算...................................21
第四章、結果與討論..........................................25
4-1水液滴在不同環境溫度與板溫的撞擊現象.......................25
4-1-1水液滴在720oC熱環境與板溫的撞擊現象.....................25
4-1-2水液滴在509oC熱環境與板溫的撞擊現象.....................27
4-1-3水液滴在407oC熱環境與板溫的撞擊現象.....................28
4-1-4水液滴撞擊型態與數據分析................................28
4-2 W/O乳化液滴在不同環境溫度與板溫的撞擊現象.................31
4-2-1 W/O乳化液滴在720oC熱環境與板溫的撞擊現象................33
4-2-2 W/O乳化液滴在509oC熱環境與板溫的撞擊現象................34
4-2-3 W/O乳化液滴在407oC熱環境與板溫的撞擊現象................34
4-2-4 W/O乳化液滴微爆現象...................................35
4-2-5 W/O乳化液滴撞擊型態與數據分析..........................35
第五章、結論...............................................38
第六章、參考文獻............................................39
第七章、圖表...............................................44

1.Frohn, A., Roth, N., “Dynamics of droplets, Springer Berlin Heidelberg, New York, 2000.
2.Ashgriz, N., “Handbook of atomization and sprays theory and applications, Springer Dordrecht Heidelberg, New York, 2011.
3.Tamura, Z., Tanasawa, Y., “Evaporation and combustion of a drop contacting with a hot surface, Proc. Combust. Inst.,Vol. 7, p. 509, 1959.
4.Incropera, F. P., Dewitt, D. P., Bergman, T. L., Lavine, A. S., “Fundamentals of heat and mass transfer, John Wiley & Sons, United States of America, 2007.
5.Cengel, Y. A., Ghajar, A. J., “Heat and mass transfer: fundamentals and applications, McGraw-Hill, New York, 2011.
6.Walker, J., “Boiling and the leidenfrost effect, Cleveland State University, http://darkwing.uoregon.edu/~linke/papers/Walker_leidenfrost_essay.pdf
7.Wachters, L. H. J., Westerling, N. A. J., “The heat transfer from a hot wall to impinging water drops in the spheroidal state, Chem. Eng. Sci., Vol. 21, p. 1047, 1996.
8.Akao, F., Araki, K., Mori, S., Moriyama, A., “Deformation behaviors of a liquid droplet impinging onto hot metal surface, Trans. Iron Steel Inst. Jpn., Vol. 20, p. 737, 1980.
9.Hatta, N., Fujimoto, H., Takuda, H., Kinoshita, K., Takahashi, O., “Collision dynamics of a water droplet impinging on a rigid surface above the leidenfrost temperature, ISIJ Int., Vol. 35, p. 50, 1995.
10.Hatta, N., Fujimoto, H., Kinoshita, K., Takuda, H., “Experimental study of deformation mechanism of a water droplet impinging on hot metallic surfaces above the leidenfrost temperature, J. Fluids Eng., Vol. 119, p. 692, 1997.
11.Fujimoto, H., Hatta, N., “Deformation and rebounding processes of a water droplet impinging on a flat surface above leidenfrost temperature, J. Fluids Eng., Vol. 118, p. 142, 1996.
12.Karl, A., Frohn, A., “Experimental investigation of interaction processes between drops and hot walls, Phys. Fluids, Vol. 12, p. 785, 2000.
13.Chandra, S., Avedisian, C. T., “On the collision of a droplet with a solid surface, Proc. R. Soc. London, Ser. A, Vol. 432, p. 13, 1991.
14.邱聖麟,“水-油複合液滴撞擊熱板的研究,國立成功大學機械工程學系,博士論文,民國九十六年。
15.Negeed, El-S. R., Ishihara, N., Tagashira, K., Hidaka, S., Kohno, M., Takata, Y., “Experimental study on the effect of surface conditions on evaporation of sprayed liquid droplet, Int. J. Therm. Sci., Vol. 49, p. 2250, 2010.
16.Fujimoto, H., Oku, Y., Ogihara, T., Takuda, H., “Hydrodynamics and boiling phenomena of water droplets impinging on hot solid, Int. J. Multiphase Flow, Vol. 36, p. 620, 2010.
17.Moita, A. S., Moreira, A. L. N., “Drop impacts onto cold and heated rigid surfaces: morphological comparisons, disintegration limits and secondary atomization, Int. J. Heat Fluid Flow, Vol. 28, p. 735, 2007.
18.Moita, A. S., Moreira, A. L., “Experimental study on fuel drop impacts onto rigid surfaces: morphological comparisons, disintegration limits and secondary atomization, Proc. Combust. Inst., Vol. 31, p. 2175, 2007.
19.Moreira, A. L. N., Moita, A. S., Cossali, E., Marengo, M., Santini, M., “Secondary atomization of water and isooctane drops impinging on tilted heated surfaces, Exp. Fluids, Vol. 43, p. 297, 2007.
20.Cossali, G. E., Marengo, M., Santini, M., “Secondary atomization produced by single drop vertical impacts onto heated surfaces, Exp. Therm Fluid Sci., Vol. 29, p. 937, 2005.
21.Cossali, G. E., Marengo, M., Santini, M., “Thermally induced secondary drop atomization by single drop impact onto heated surfaces, Int. J. Heat Fluid Flow, Vol. 29, p. 167, 2008.
22.Dryer, F. L., ‘‘Water addition to practical combustion system-concepts and applications,’’ Proc. Combust. Inst., Vol. 16, p. 279, 1977.
23.Warnatz, J., Maas, U., Dibble, R. W., “Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, Springer Berlin Heidelberg, New York, 2006.
24.Glassman, I., Yetter, R. A., “Combustion, Academic Press, New York, 2008.
25.Turns, S. R., “An introduction to combustion, concepts and applications, McGraw-Hill, New York, 2011.
26.Sirignano, W. A., “Fluid dynamics and transport of droplets and sprays, Cambridge University, New York, 2010.
27.Ivanov, V. M., Nefedov, P. I., ‘‘Experimental investigation of the combustion process in nature and emulsified fuels,’’ Trudy Instituta Goryachikh Iskopayemykh, Vol. 19, p. 35, 1962.
28.Law, C. K., “Recent advances in droplet vaporization and combustion, Prog. Energy Combust. Sci., Vol. 8, p. 171, 1982.
29.Law, C. K., “Combustion physics, Cambridge University, New York, 2006.
30.Avedisian, C. T., Fatehi, M., “An experimental study of the leidenfrost evaporation characteristics of emulsified liquid droplets, Int. J. Heat Mass Transfer, Vol. 31, p. 1587, 1988.
31.Takashima, T., Shiota, H., “Evaporation of an oil in water type emulsion droplet on a hot surface, Heat Transfer Asian Research, Vol. 34, p. 527, 2005.
32.Xiong, T. Y., Yuen, M. C., “Evaperation of a liquid droplet on a hot plate, Int. J. Heat Mass Transfer, Vol. 34, p. 1881, 1991.
33.黃世杰,“W/O乳化柴油液滴與生質柴油液滴撞擊熱板之行為研究 ,南台科技大學機械工程系,碩士論文,民國九十七年。
34.陳正文,“複合液滴的受熱行為與微爆現象,國立成功大學機械工程學系,碩士論文,民國九十四年。
35.Avedisian, C. T., Andres, R. P., “Bubble nucleation in superheated liquid-liquid emulsions, J. Colloid Interface Sci., Vol. 64, p. 438, 1978.
36.Wang, C. H., Law, C. K., “Microexplosion of fuel droplets under high pressure, Combust. Flame, Vol. 59, p. 53, 1985.
37.Wang, C. H., Chen, J. T., “An experimental investigation of the burning characteristics of water-oil emulsions, Int. Comm. Heat Mass Transfer, Vol. 23, p. 823, 1996.
38.Tsue, M., Kadota, T., Segawa, D., Yamasaki, H., ‘‘Statistical analysis on onset of microexplosion for an emulsion droplet,’’ Proc. Combust. Inst., Vol. 26, p. 1629, 1996.
39.Tsue, M., Yamasaki, H., Kadota, T., Segawa, D., Kono, M., ‘‘Effect of gravity on onset of microexplosion for an oil-in-water emulsion droplet,’’ Proc. Combust. Inst., Vol. 27, p. 2587, 1998.
40.Segwa, D., Yamasaki, H., Kadota, T., Tanaka, H., Enomoto, H., Tsue, M., “Water-coalescence in an oil-in-water emulsion droplet burning under microgravity, Proc. Combust. Inst., Vol. 28, p. 985, 2000.
41.Kadota, T., Yamasaki, H., “Recent advances in the combustion of water fuel emulsion, Prog. Energy Combust. Sci., Vol. 28, p. 385, 2002.
42.Kadota, T., Tanaka, H., Segawa, D., Nakaya, S., Yamasaki, H., “Microexplosion of an emulsion droplet during leidenfrost burning, Proc. Combust. Inst., Vol. 31, p. 2125, 2007.
43.王俊堯,“乳化燃料之微爆現象與燃燒性能分析,崑山科技大學機械工程系,碩士論文,民國九十八年。
44.Faeth, G. M., “Current status of droplet and liquid combustion, Prog. Energy Combust. Sci., Vol. 3, p. 191, 1977.
45.ChemBlink, “Online database of chemicals from around the world, http://www.chemblink.com/products/1338-43-8.htm
46.Sazhin, S. S., “Advanced models of fuel droplet heating and evaporation, Prog. Energy Combust. Sci., Vol. 32, p. 162, 2006.
47.Ueda, T., Enomoto, T., Kanetsuki, M., “Heat transfer characteristics and dynamic behavior of saturated droplets impinging on a heated vertical surface, Bulletin of the JSME, Vol. 22, p. 724, 1979.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top