跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昇緯
研究生(外文):Sheng-WeiLin
論文名稱:多脈衝式Nd-YAG雷射輔助金屬粉末/樹脂披覆系統之研究
論文名稱(外文):Study of the metal powder/resin cladding system with the multi-pulse Nd-YAG laser
指導教授:林震銘
指導教授(外文):Jehn-Ming Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:88
中文關鍵詞:多脈衝式Nd-YAG雷射樹脂披覆
外文關鍵詞:multi-pulse Nd-YAG laserresincladding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文目的為探討多脈衝式Nd-YAG雷射輔助金屬粉末/樹脂披覆系統的效果,以數值模擬與實驗方法進行研究。數值模擬部份使用數值分析軟體FLUENT,在不同的輸送高度與時間下,計算樹脂輸出的情形,進而得到複合層高度的趨勢。在實驗部份先觀察複合層的分佈情形,接著進行單點與連續的脈衝式雷射披覆加工,並量測披覆試件的表面形貌,探討不同的送膠參數對披覆層高度的影響,最後將披覆試件進行微拉伸試驗與金相組織觀察。
實驗與數值模擬結果皆顯示,複合層的高度會隨著送膠參數改變,但須在適當的複合層高度下,才可獲得較高的披覆層高度,而經由多脈衝式雷射加工,可得到連續單點披覆組成的線披覆。由微拉伸實驗結果可發現連續披覆層的強度高於母材,而觀察金相顯微組織得知其結構與雷射燒結現象相似,且點與點之間結合效果良好。
The purpose of this thesis is to characterize the metal powder/resin cladding system with the Nd-YAG laser numerically and experimentally. In the numerical simulation, the FLUENT software was applied to simulate the flow field of the resin output from a feeder nozzle on a substrate with various outlet heights and output times.

In the experiment, the distribution of the metal powder/resin composite layer has been visualized. The multi-pulse cladding was made by the pulsed Nd-YAG laser. Furthermore the cladding specimen was verified by micro tensile test and metallurgical observation.

Both the numerical simulation and experimental results show that an optimum cladding profile could be obtained with proper selection of the composite outlet height. According to the micro tensile test, the strength of the multi-pulse cladding layer is higher than the base material. It can be found the cladding microstructure is similar to that of the conventional laser cladding but with fine bonding structure.
摘要……………………………………………………………………... I
Abstract…………………………………………………………………. II
誌謝……………………………………………………………………... III
目錄……………………………………………………………………... IV
表目錄…………………………………………………………………... VIII
圖目錄…………………………………………………………………... X
符號說明………………………………………………………………... XIII

第一章 緒論……………………………………………………………. 1
1-1研究目的………………………………………………………... 1
1-2文獻回顧………………………………………………………... 3
1-2.1連續式雷射作用預置複合層之披覆製程相關研究…….. 3
1-2.2脈衝式雷射作用預置複合層之披覆製程相關研究…….. 7
1-3本文架構………………………………………………………... 12

第二章 脈衝雷射現象與製程原理……………………………………. 13
2-1雷射披覆機制…………………………………………………... 13
2-1.1雷射披覆加工參數……………………………………….. 14
2-1.2披覆品質………………………………………………….. 16
2-2 流場理論與複合材料性質…………………………………...... 18
2-2.1多相流流體力學………………………………………...... 18
2-2.1.1多相流的自由表面………………………………..... 18
2-2.1.2多相流的連續、動量和能量方程式……….……….. 19
2-2.2複合材料性質…………………………………………...... 20
2-3表面張力………………………………………………………... 22

第三章 數值模擬及分析……………………………………................. 27
3-1數值模擬軟體FLUENT分析流程……………………………... 27
3-2物理性質及模擬模型…………………………………………... 28
3-2.1物理性質………………………………………………...... 28
3-2.2複合層流動模擬假設與設計…………………………...... 30
3-3複合層流動之模擬結果………………………………………... 33
3-4結果與討論……………………………………………………... 42

第四章 實驗……………………………………………………………. 43
4-1實驗設備及流程………………………………………………... 43
4-1.1實驗設備………………………………………………...... 43
4-1.2實驗流程………………………………………………...... 47
4-2實驗參數與控制步驟…………………………………………... 48
4-3複合層成形與流動觀察………………………………………… 50
4-3.1複合層成形結果………………………………………...... 50
4-3.2複合層流動之實驗結果與數值模擬結果比較………...... 52
4-4粉末遮蔽效應…………………………………………………... 59
4-5 披覆層表面形貌量測…………………………………..…...... 60
4-5.1單點披覆………………………………………………...... 60
4-5.2連續披覆………………………………………………...... 65
4-6披覆層微拉伸實驗與斷面金相組織觀察……………………... 72
4-6.1披覆層微拉伸實驗……………………………………...... 72
4-6.2斷面金相組織觀察……………………………………...... 74
4-7 結果與討論…………………………………………………...... 76

第五章 綜合討論與建議…………………………………………......... 78
5-1綜合討論………………………………………………………... 78
5-2未來發展與相關建議…………………………………………... 81

參考文獻………………………………………………………………... 82
附錄……………………………………………………………………... 85
自述……………………………………………………………………... 88

[1]Steen W. M., “Laser material processing, Springer Verlag, 1998.
[2]Chen S. L., Hsu R. L. “The effects of material composition on the quality of ceramic-metal composite cladding onto Al-alloys with a pulsed Nd-YAG laser, International Journal Of Advanced Manufacturing Technology, v15, no.7, p461-469, 2003.
[3]Elijah Kannatey-Asibu Jr., “Principles of Laser Materials Processing, Wiley, 2009.
[4]Salehi D. S. “Sensing and Control of Nd:YAG Laser Cladding Process, Applied Surface Science, Swinburne University of Technology, 2005.
[5]Zhang Q. He J. Liu W. Zhong M. “Microstructure characteristics of ZrC-reinforced composite coating produced by laser cladding Surface and Coatings Technology, v162, p140-146, 2003.
[6]Chen Y., Wang H.M. “Microstructure of laser clad TiC/NiAl–Ni3(Al,Ti,C) wear-resistant intermetallic matrix composite coatings, Materials Letters, v57,p2029-2036, 2003.
[7]Yang S., Chena N., Liu W., Zhong M., Wang Z., Kokawa H. “Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding, Surface and Coatings Technology, v 183, p 254-260, 2004.
[8]Chiu K. Y., Cheng F. T., Man H. C. “Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion, Materials Science and Engineering, v402, p126-134, 2005.
[9]Man H. C., Zhang S., Cheng F. T., Guo X. “In situ formation of a TiN/Ti metal matrix composite gradient coating on NiTi by laser cladding and nitriding, Surface & Coatings Technology,v200, p4961-4966, 2006.
[10]Yao J., Sun G. P., Lin W. G., Liu C. and Mao G. L., “Characterisation and formation of boundary in laser cladding AZ91D with Al+Al2O3, Materials Science and Technology, v 23, no4, 2007.
[11]Li M., Chao M., Liang E., Yu J., Zhang J., Li D., “Improving wear resistance of pure copper by laser surface modification, Applied Surface Science, v 258, p 1599-1604, 2011.
[12]Liu Y. H., Guo Z. X., Yang Y., Wang H. Y., Hu J. D., Li Y. X., Chumakov A.N., Bosak N.A., “Laser (a pulsed Nd:YAG) cladding of AZ91D magnesium alloy with Al and Al2O3 powders, Applied Surface Science, v253,p1722-1728, 2006.
[13]Yang Y., Hu J. D., Wang S. Y., Liu S. Y., Li Y. X., Guo Z. X. “Laser (Nd:YAG) Cladding of AZ91D Magnesium Alloys with Al+Ti+C NanopowdersLaser in Engineering, v16, p9-17, 2006.
[14]Yang Y., Wu H. “Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al–Si powders, Materials Letters, v52,p19-21, 2009.
[15]Cai L. F., Mark C. K. Zhou W. “Laser cladding of magnesium alloy AZ91D with silicon carbide, Surface Review and Letters, v16 , no2, p215-221, 2009.
[16]Samant A. N., Du B., Paital S. R. , Kumar S., Dahotre N. B. “Pulsed laser surface treatment of magnesium alloy: Correlation between thermal model and experimental observations, Journal of Materials Processing Technology, v209,p5060-5067, 2009.
[17]Yan H., Wang A., Xu K., Wang W., Huang Z. “Microstructure and interfacial evaluation of Co-based alloy coating on copper by pulsed Nd:YAG multilayer laser cladding, Journal of Alloys and Compounds, v505,p645-663, 2010.
[18]Yang Y. Zhang D., Yan W., Zheng Y. “Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding, Optics and Lasers in Engineering, v48, p119-124, 2010
[19]鄭凱宇, 雷射披覆/燒結合成法之表面張力與孔隙現象研究, 國立成功大學機械工程研究所碩士論文,2009.
[20]Li Y., Ma J. “Study on overlapping in the laser cladding process Surface and Coatings Technology, v90, p1-5, 1997.
[21]Schneider M. F. ,Laser cladding with powder, effect of some machining parameters on clad properties, Ph.D. Thesis University of Twente, Enschede, 1998.
[22]Cheng F. T., Lo K. H., Man H. C. “A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire Materials Science and Engineering, v380, p20-29, 2004.
[23]White F. M., Fluid mechanics,2nd ed., McGraw-Hill,1986.
[24]謝曉星, 基本流體力學, 台灣東華書局股份有限公司,1991.
[25]FLUENT 5 User Guide, Fluent Inc,1998.
[26]洪健富, 雷射送線披覆之厚度研究, 國立成功大學機械工程研究所碩士論文, 2001.
[27]朱紅鈞, 林元華, 謝龍漢, FLUENT 流體分析及仿真實用教程, 人民郵電出版社, 2010.
[28]顧宜, 複合材料, 新文京開發出版股份有限公司, 2002.
[29]陳韋伶, 表面鍍銅改良碳纖維/環氧樹脂熱傳導性質之研究, 國立成功大學材料科學及工程學系碩博士論文, 2003
[30]葉清松, 王鴻烈, 流體力學概論, 高立圖書有限公司, 1997.
[31]嚴嘉蕙, 物理化學實驗, 新文京開發出版股份有限公司, 2006.
[32]陶雨台編譯, 表面物理化學, 千華圖書出版事業有限公司, 1988.
[33]Munson B. R., Young D. F., Okiishi T.H. “Fundamentals of Fluid Mechanics, 4th ed, 2001.
[34]F LUENT 6.3 User's Guide, Fluent Inc. 2006.
[35]Tavana H., Simon F., Grundke K., Kwok D.Y., Hair M.L., Neumann A.W. “Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension Journal of Colloid and Interface Science, v291, p497-506, 2005.
[36]Radiom M., Yang C., Chan W. K., “Characterization of surface tension and contact angle of nanofluids, Proceedings of SPIE -The International Society for Optical Engineering, v 7522, 2010.
[37]He X., Fuerschbach P. W., DebRoy T., “Heat transfer and fluid flow during laser spot welding of 304 stainless steel Journal of Physics D: Applied Physics, v36, p1388-1398,2003.
[38]Lippold J. C., Kotecki D. C. “Welding metallurgy and weldability of stainless steels, Wiley-Interscience, 2005.
[39]Dillon C. P., “Corrosion resistance of stainless steels, M. Dekker, 1995
[40]Lawrence J., Pou J., Low D. K. Y., Toyserkani E., “Advances in laser materials processing, Woodhead Publishing Ltd, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top