跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林哲盛
研究生(外文):Che-ShengLin
論文名稱:應用測溫平板於耐火試驗中之熱輻射通量量測
論文名稱(外文):Application of Plate Thermometer to Measure Incident Radiant Heat Flux in Fire Resistance Tests
指導教授:溫昌達
指導教授(外文):Chang-Da Wen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:144
中文關鍵詞:測溫平板熱通量耐火試驗防火門防火窗
外文關鍵詞:Plate thermometerHeat fluxFire resistance testFire doorFire window
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
在目前的科學研究上,有許多熱輻射通量的量測儀器,但其大多價格昂貴且量測高溫時需搭配冷卻系統,因此本研究將研製一種可量測熱輻射通量之測溫平板,藉由量測溫度以推得該平板所接收到之熱輻射通量,其製作容易價格低廉,並可大量製作以滿足多點量測的需求。本研究設計了一系列實驗以探討各種因素對測溫平板的影響,並輔以數值模擬方法和實驗結果做比較,最後將測溫平板用於全尺寸防火門窗耐火實驗中,以驗證測溫平板有其研發及應用價值。
經過本研究改良設計後的測溫平板,其構造簡單更容易製作,其主導背後熱散失項的傳導校正因子降至約2 W/m2K左右。研究發現在近穩態的環境下,測溫平板和校正過的熱通量計的誤差皆在0.5 kW/m2以內,有相當不錯的結果。而平板尺寸對測溫平板的量測結果上並無太大的影響,但其內部的熱傳比例會改變,尺寸越小對流以及傳導所占的比例越大。此外發現測溫平板比熱通量計更容易受距離增加而影響,因為測溫平板和熱源間的視因子隨距離衰退的比例比較大。反應時間的部分,發現測溫平板需300至500秒才能達到穩態,對流增強或入射熱輻射通量提高,時間常數會降低。而在強制對流的環境下,測溫平板所得到的值會偏低,原因是平板表面溫度會受對流冷卻所致。
此外全尺寸非阻熱型(B種)防火門、防火窗耐火試驗中,發現非曝火面測溫平板和熱通量計量測的熱輻射通量值誤差皆小於0.5 kW/m2,因此可發現測溫平板於耐火試驗的環境中仍可得到不錯的量測結果。
至於數值模擬的部分,本研究利用MATLAB以及FDS兩種軟體模擬測溫平板的溫度以及接收到的熱輻射通量,發現模擬實驗室中實驗結果溫度誤差大多皆在± 30℃以內,而熱輻射通量誤差大多皆在±0.5 kW/m2以內,皆算是不錯的結果。而全尺寸實驗FDS模擬平板溫度則是在實驗前期誤差會最大,之後會和實驗結果相近,誤差皆保持在± 30℃以內。而模擬全尺寸實驗熱輻射通量的部分,模擬結果所得趨勢和實驗一致,MATLAB大多誤差皆維持在±1 kW/m2以內,而FDS則略高於此值,整體而言, MATLAB和FDS對於模擬耐火實驗的結果具有一定的可信度。
Nowadays, there are many kinds of instruments to measure radiant heat flux, but most of them are expensive and require cooling system while measuring high-temperature objects. In this research, we design a plate thermometer (PT) which can infer the incident radiant heat flux by measuring the surface temperature. Its easy-fabrication and low-cost allow us to produce a lot so that many data points can be measured simultaneously. The purpose of this study is to discuss the influence of each parameter of PT by a series of experiments. In this study, the results of PT are compared with which obtained by heat flux meter (HFM) and simulation, and then the PT is used in full-scale fire resistance tests for fire door and fire window in order to verify its usability and performance.
The innovative design of plate thermometer in this study has simpler structure and it is easily fabricated, and the conduction correction factor which represents heat loss from backside is approximately 2 W/m2K. In quasi-steady state, the results of the PT are very close to that of the calibrated HFM. The differences are all within 0.5 kW/m2. Besides, the values measured by PT would not be affected by changing size, but the proportions of heat transfer mechanism would change. The ratio of convection and conduction would increase in the small size PT. Moreover, the declining rate of view factor with distance of PT is greater than HFM, so the influence by changing distance of PT is greater than HFM. In regard to the response time, the PT needs approximately 300~500 seconds to reach quasi-steady state if the environment changes suddenly. It is also found that the time constant is lower if incident radiant heat flux or forced convection increases. On the other hand, the value obtained by plate thermometer is underestimated in forced convection, because the surface of plate is cooled by convection.
Moreover, the PT is used to measure incident radiant heat flux of non-insulated (Grade B) fire doors and fire windows in full-scale fire resistance tests. The differences between PT and HFM are all within 0.5 kW/m2, so it proves that the plate thermometer can be regarded as a reliable apparatus to measure incident radiant heat flux in full-scale experiments.
In this study MATLAB and FDS are also used to simulate the temperature and incident radiant heat flux of plate thermometer, and then the results are compared with experiments. In laboratory experiments, the errors of temperature and incident radiant heat flux between the PT and the HFM are low, and most are within ± 30℃ and ± 0.5 kW/m2, respectively. In full-scale experiment, the maximum error occurs in the beginning of experiment when using FDS to simulate plate temperature, and then the simulated results will be close to experimental ones as time passes through. Most of the errors are within ± 30℃. The trends of incident radiant heat flux obtained by simulations and experiments are similar to each other. Most of the errors of MATLAB are within ±1 kW/m2, and the errors of FDS are slightly higher than MATLAB. Overall, it is reliable to use MATLAB and FDS to simulate in fire resistance tests.
摘要 I
Abstract III
Acknowledgments V
Contents VI
List of Tables IX
List of Figures XI
Nomenclature XVI
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Literature Review 2
1.3 Research Motive and Goal 8
1.4 Research Construction 9
Chapter 2 Heat Transfer Analysis 11
2.1 Plate Thermometer 11
2.1.1 Structure of the plate thermometer 11
2.1.2 Governing equation 17
2.2 Gardon Gage Heat Flux Meter 29
2.2.1 Structure of Gardon gage heat flux meter 29
2.2.2 Governing equation 30
Chapter 3 Experimental and Numerical Methods 35
3.1 Calibration of Heat Flux Meter 35
3.2 In-lab Experiments for Plate Thermometer 40
3.2.1 Compare plate thermometer with heat flux meter 40
3.2.2 Size of plate thermometer 47
3.2.3 Distance away from heat source 47
3.2.4 Response of transient experiment 52
3.2.5 Wind speed around the plate thermometer 55
3.3 Full-scale Experiments 58
3.3.1 Fire doors 58
3.3.2 Fire windows 65
3.4 Numerical Simulation 69
3.4.1 In-lab Experiments 69
3.4.2 Full-scale Experiments 74
Chapter 4 Results and Discussion 80
4.1 In-lab Experiments 80
4.1.1 Compare the plate thermometer with heat flux meter 80
4.1.2 Convective heat transfer coefficient in free convection 83
4.1.3 Size of plate thermometer 86
4.1.4 Distance away from heat source 92
4.1.5 Response of transient experiment 94
4.1.6 Wind speed around the plate thermometer 100
4.1.7 Numerical simulation results 107
4.2 Full-scale Experiments 112
4.2.1 Comparison of plate thermometer and heat flux meter 112
4.2.2 Incident radiant heat flux received by nine plate thermometers 114
4.2.3 Temperature and incident radiant heat flux at different distance 117
4.2.4 Numerical simulation results 122
Chapter 5 Conclusions and Future Prospect 129
5.1 Conclusions 129
5.2 Future Prospect 132
References 133
Appendices 137
Appendix A 138
Appendix B 139
Appendix C 140
Appendix D 141
Appendix E 142
Appendix F 143
Vita 144
1.T. E. Diller(1999), “Heat Flux, Ch. 34, in The Measurement, Instrumentation and Sensors Handbook, Ed. J. G. Webster, CRC Press, Boca Raton, Florida, pp. 34.1-15.
2.U. Wickström(1989), “The Plate Thermometer-A Simple Instrument for Reaching Harmonized Fire Resistance Tests, SP Report 1989:03, Swedish National Testing and Research Institute, Borås, Sweden.
3.ISO 834-1(1999), “Fire-Resistance Tests-Elements of Building Construction-Part 1: General Requirements, International Organization for Standardization, Geneva, Switzerland.
4.ASTM E119-09(2009), “Standard Test Methods for Fire Tests of Building Construction and Materials, American Society for Testing and Materials, Philadelphia, USA.
5.U. Wickström(1994), “The Plate Thermometer-A Simple Instrument for Reaching Harmonized Fire Resistance Tests, Fire Technology Second Quarter, pp.195-208.
6.BS EN 1363-1(1999), “Fire Resistance Tests-Part 1: General Requirements, British Standards Institute, London, UK.
7.H. Ingason, and U. Wickström(2007), “Measuring Incident Radiant Heat Flux Using the Plate Thermometer, Fire Safety Journal, Vol. 42, Issue 2, pp.161-166.
8.ISO 5660-1(2002), “Reaction to Fire Tests-Heat Release, Smoke Rroduction and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method), International Organization for Standardization, Geneva, Switzerland.
9.A. Häggkvist(2009), “The Plate Thermometer as a Mean of Calculating Incident Heat Radiation, Department of Civil, Mining and Environmental Engineering, Luleå University of Technology, Sweden.
10.U. Wickström, R. Jansson, and H. Tuovinen(2009), “Validation Fire Tests on Using the Adiabatic Surface Temperature for Predicting Heat Transfer, SP Report 2009:19, SP Technical Research Institute of Sweden, Borås, Sweden.
11.A. P. Robbins, and P. C. R. Collier(2009), “Heat Flux Measurements: Experiments and Modelling, BRANZ Study Report 206, BRANZ Ltd, Judgeford, New Zealand.
12.CNS 11227(2001), “Method of Fire Resistance Test for Fire Door of Building, Chinese National Standards, Taipei, Taiwan (R.O.C).
13.CNS 14815(2010), “Method of Fire Resistance Test for Fire Fixed Window of Building, Chinese National Standards, Taipei, Taiwan (R.O.C).
14.R. Siegel, and J. R. Howell(2001), “Thermal Radiation Heat Transfer, 4th Ed., Taylor & Francis Inc, New York, USA.
15.F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine(2007), “Fundamentals of Heat and Mass Transfer, 6th Ed., John Wiley & Sons, Inc., New Jersey, USA.
16.S. W. Churchill, and H. H. S. Chu(1975), “Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate, International Journal of Heat Mass Transfer, Vol. 18, pp. 1323-1328.
17.R. Gardon(1953), “An instrument for the direct measurement of intense thermal radiation, The Review of Scientific Instruments, Vol. 24, 366-370.
18.C. H. Kuo, and A. K. Kulkarni(1991), “Analysis of Heat Flux Measurement by Circular Foil Gages in a Mixed Convection/Radiation Environment, Journal of Heat Transfer, Vol. 113, pp. 1037-1040.
19.Wikipedia, the online encyclopedia, “Gardon gauge, http://en.wikipedia.org/wiki/ Gardon_gauge.
20.ISO 14934-2(2006), “Fire tests-Calibration and use of heat flux meters-Part 2: Primary calibration methods, International Organization for Standardization, Geneva, Switzerland.
21.K. McGrattan, R. McDermott, and S. Hostikka et al.(2010), “Fire Dynamics Simulator (Version 5)-User’s Guide, NIST Special Publication 1019-5, National Institute of Standards and Technology, USA.
22.K. McGrattan, S. Hostikka, and J. Floyd et al.(2010), “Fire Dynamics Simulator (Version 5)-Technical Reference Guide-Volume 1: Mathematical Model, NIST Special Publication 1018-5, National Institute of Standards and Technology, USA.
23.“Table of Total Emissivity, http://www.omega.com/temperature/z/pdf/z088-089.pdf , Omega.com, Omega Engineering Inc., USA.
24.NFPA 80(2007), “Standard for Fire Doors and Other Opening Protectives, National Fire Protection Association, Massachusetts, USA.
25.鍾基強, 何明錦(2007), “建築物水系統對火災熱輻射危害控制與驗證, 內政部建築研究所研究報告, 內政部建築研究所, 台北, 台灣.
26.BS PD 7974-3(2003), “Application of Fire Safety Engineering Principles to the Design of Building-Part 3: Structural Response and Fire Spread Beyond the Enclosure of Origin, British Standards Institute, London, UK.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top