跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 11:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳家瑋
研究生(外文):Chia-WeiChen
論文名稱:鈦合金(Ti-6Al-7Nb)在高溫下之高速撞擊與微觀特徵分析
論文名稱(外文):High Temperature Impact Behavior and Microstructural Evolution of Titanium Alloy(Ti-6Al-7Nb)
指導教授:李偉賢李偉賢引用關係
指導教授(外文):Woei-Shyan Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:142
中文關鍵詞:霍普金森桿Ti-6Al-7Nb高溫應變速率絕熱剪切帶差排疊差缺陷
外文關鍵詞:split Hopkinson barTi-6Al-7Nb alloyhigh temperaturestrain rateadiabatic shear banddislocationstacking fault
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是利用霍普金森高速撞擊試驗機及高溫裝置,測試Ti-6Al-7Nb合金於不同溫度和高應變速率荷載下之塑性變形行為及微觀結構變化,圓柱形試片分別於溫度25℃、300℃與700℃,及應變速率1000s-1、2000 s-1與3000 s-1條件下進行高速撞擊,以了解溫度及應變速率對材料塑變行為及微觀結構之影響。實驗結果顯示,溫度及應變速率對Ti-6Al-7Nb合金之機械性質影響甚鉅。在相同溫度條件下,其塑流應力值、加工硬化率及應變速率敏感性係數均會隨著應變速率之增加而上升,而熱活化體積則會下降。相反的,在相同應變速率條件下,其塑流應力值、加工硬化率及應變速率敏感性係數會隨溫度之增加而下降,而熱活化體積則會上升。此外,可以藉由Combined Johnson-Cook and Zerilli-Armstrong構成方程式,來精確的預測此合金在不同溫度及應變速率下的塑變行為。在微觀結果方面,由光學式顯微鏡之觀測可知Ti-6Al-7Nb合金中有絕熱剪切帶形成及晶粒組織形貌的改變,兩者皆受溫度與應變速率的影響,而剪切帶中之裂縫生成與結合,為導致材料發生破壞的主要原因。在掃描式電子顯微鏡分析下,破壞形貌中可發現大量的韌窩組織,表示Ti-6Al-7Nb合金屬於延性破壞模式,且其韌窩組織隨著溫度和應變速率的增加變得較密且深。而在穿透式電子顯微鏡下則可觀察到差排密度隨著應變速率上升而增加,且可發現疊差缺陷的產生。最後結合巨觀與微觀之結果可發現,塑流應力值與差排密度均方根值成線性關係。
The high temperature deformation and microstructural evolution of Ti-6Al-7Nb biomedical alloy under high strain rate loading condition are investigated by means of a split-Hopkinson bar and a clam-shell radiant-heating furnace. Impact tests are performed at strain rate ranging from 1×103 to 3×103 s-1 and temperatures between 25℃ and 700℃. The experimental results indicate that the flow response of Ti-6Al-7Nb alloy is related to temperature and strain rate. At a constant temperature, plastic stress, work hardening rate and strain rate sensitivity all increase with the increasing strain rate, while the thermal activation volume decreases. However, at a constant strain rate, plastic stress, work hardening rate and strain rate sensitivity decrease with increasing temperature, while the thermal activation volume increases. It is found that high temperature and high strain rate deformation behavior of Ti-6Al-7Nb alloy can be adequately described using the Combined Johnson-Cook and Zerilli-Armstrong constitutive equation. The fracture analysis results indicate that the Ti-6Al-7Nb specimens fail predominantly as the result of intensive localized shearing. Furthermore, it is shown that the flow localization effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Ti-6Al-7Nb specimens are characterized by a dimple like structure. The density of the dimples increases with an increasing strain rate or increasing temperature. Transmission electron microscopy observations reveal that the dislocation density increases with an increasing strain rate, but decreases with an increasing temperature. The strengthening effect observed at higher strain rates and lower temperatures is attributed to a greater dislocation density. A linear relationship between the square root of the dislocation density and the true stress is also found.
中文摘要--------------------I
Abstract------------------II
誌謝-----------------------III
總目錄---------------------IV
表目錄---------------------VI
圖目錄---------------------VII
符號說明-------------------XV
第一章 前言---------------1
第二章 理論與文獻回顧-------4
2-1 鈦合金之介紹---------4
2-2 Ti-6Al-7Nb之介紹----6
2-3 塑性變形之機械測試類別-8
2-4 一維波傳理論---------10
2-5 霍普金森桿原理-------12
2-6 材料塑性變形行為之特性-14
2-7 材料構成方程式-------18
第三章 實驗方法與步驟-------31
3-1 實驗流程------------31
3-2 實驗儀器與設備-------31
3-3 實驗步驟------------35
3-3-1 實驗材料備製---------35
3-3-2 動態衝擊實驗---------35
3-3-3 試件金相之觀察(OM)---37
3-3-4 SEM破斷面之觀察------37
3-3-5 TEM試片製備---------37
第四章 實驗結果與討論-------40
4-1 應力-應變曲線--------40
4-2 加工硬化率-----------41
4-3 應變速率敏感性係數----43
4-4 熱活化體積-----------44
4-5 活化能--------------45
4-6 溫度敏感性係數-------47
4-7 理論溫升量-----------48
4-8 材料構成方程式-------50
4-9 OM金相組織觀察-------51
4-10 SEM 破壞形貌分析-----52
4-11 TEM 微觀結構分析-----53
第五章 結論---------------131
參考文獻 ------------------134

1.M. Niinomi, Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 2003. 4(5): p. 445-454.
2.K. Wang, The use of titanium for medical applications in the USA. Materials Science and Engineering: A, 1996. 213(1): p. 134-137.
3.V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe and R. Z. Valiev, Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Materials Science and Engineering: A, 2003. 343(1): p. 43-50.
4.W. S. Lee and C. F. Lin, Plastic deformation and fracture behaviour of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Materials Science and Engineering: A, 1998. 241(1): p. 48-59.
5.M. Niinomi, Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 1998. 243(1): p. 231-236.
6.A. Choubey, R. Balasubramaniam and B. Basu, Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti–6Al–4V in simulated physiological environment. Journal of alloys and compounds, 2004. 381(1): p. 288-294.
7.K. Bordji, J. Y. Jouzeau, D. Mainard, E. Payan, P. Netter, K. T. Rie, T. Stucky and M. Hage-Ali, Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5 Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials, 1996. 17(9): p. 929-940.
8.M. Long and H. J. Rack, Titanium alloys in total joint replacement-a materials science perspective. BIOMATERIALS-GUILDFORD-, 1998. 19: p. 1621-1639.
9.D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro, Design and mechanical properties of new( i) β(/i) type titanium alloys for implant materials. Materials Science and Engineering: A, 1998. 243(1): p. 244-249.
10.R. Banerjee, S. Nag, J. Stechschulte and H. L. Fraser, Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys. Biomaterials, 2004. 25(17): p. 3413-3419.
11.賴耿陽, 金屬鈦理論與應用. 1990, 復漢出版社.
12.R. A. Wood, Titanium Alloy Handbook, Metals and Ceramics Information Center, Battrlle. Publication No. 1972, MCIC-HB-02, December.
13.E. W. Collings and J. C. Ho, PHYSICAL PROPERTIES OF TITANIUM ALLOYS. 1970, Battelle Memorial Inst., Columbus, Ohio.
14.I. Gurrappa, Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Materials characterization, 2003. 51(2-3): p. 131-139.
15.F. E. Hauser, Techniques for measuring stress-strain relations at high strain rates. Experimental Mechanics, 1966. 6(8): p. 395-402.
16.D. J. Steinberg, S. G. Cochran and M. W. Guinan, A constitutive model for metals applicable at high‐strain rate. Journal of Applied Physics, 1980. 51(3): p. 1498-1504.
17.J. R. Klepaczko. Discussion of microstructural effects and their modelling at high rates of strain. 1989: Institute of Physics.
18.V. Jantou, D. S. McPhail, R. J. Chater and A. Kearsley, Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station. Applied surface science, 2006. 252(19): p. 7120-7123.
19.B. S. Rodchenkov, A. V. Kozlov, Y. G. Kuznetsov, G. M. Kalinin and Y. S. Strebkov, Irradiation behavior of Ti–4Al–2V (ΠT-3B) alloy for ITER blanket modules flexible attachment. Journal of Nuclear Materials, 2007. 367: p. 1312-1315.
20.M. Yamada, An overview on the development of titanium alloys for non-aerospace application in Japan. Materials Science and Engineering: A, 1996. 213(1): p. 8-15.
21.G. Lutjering, J. C. Williams and A. Gysler, Microstructure and mechanical properties of titanium alloys. Microstructure and Properties of Materials, 2000. 2: p. 1-74.
22.M. J. Donachie, Titanium: a technical guide. 2000: Asm Intl.
23.K. Wang, L. Gustavson and J. Dumbleton, The Characterization of Ti--12 Mo--6 Zr--2 Fe: a New Biocompatible Titanium Alloy Developed for Surgical Implants. Beta Titanium Alloys in the 1990's, 1993: p. 49-60.
24.A. K. Mishra and J. Davidson, Ti--13 Nb--13 Zr: a New Low Modulus, High Strength, Corrosion Resistant Near-Beta Alloy for Orthopaedic Implants. Beta Titanium Alloys in the 1990's, 1993: p. 61-72.
25.C. A. Engh and J. D. Bobyn, The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clinical orthopaedics and related research, 1988. 231: p. 7.
26.T. Akahori, M. Niinomi and A. Suzuki, Improvement in mechanical properties of dental cast Ti-6Al-7Nb by thermochemical processing. Metallurgical and Materials Transactions A, 2002. 33(3): p. 503-510.
27.M. Niinomi, Metallic biomaterials. Journal of Artificial Organs, 2008. 11(3): p. 105-110.
28.L. Huang, Effects of Surface Treatments on Bond Strength of Dental Titanium Alloys to Porcelain. 2008.
29.W. J. Evans, Optimising mechanical properties in alpha+ beta titanium alloys. Materials Science and Engineering: A, 1998. 243(1): p. 89-96.
30.M. F. Semlitsch, H. Weber, R. M. Streicher and R. Schön, Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy. Biomaterials, 1992. 13(11): p. 781-788.
31.M. Biel, M. Lucki, T. Moskalewicz, J. Lekki, T. Wierzchon and A. Czyrska-Filemonowicz, TEM and SFM investigation of nitrided Ti-1Al-1Mn alloy for medical applications. Materials chemistry and physics, 2003. 81(2-3): p. 430-433.
32.P. F. Barbosa and S. T. Button, Microstructure and mechanical behaviour of the isothermally forged Ti-6Al—7Nb alloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2000. 214(1): p. 23-31.
33.M. Semlitsch, Titanium alloys for hip joint replacements. Clinical materials, 1987. 2(1): p. 1-13.
34.D. R. Curran, L. Seaman and D. A. Shockey, Linking dynamic fracture to microstructural processes. Shock waves and high-strain-rate phenomena in metals, 1981: p. 129-167.
35.U. S. Lindholm, Techniques in metals research. Techniques in Metals Research, 1971. 5(part 1): p. 228-240.
36.U. S. Lindholm and L. M. Yeakley, High strain-rate testing: tension and compression. Experimental Mechanics, 1968. 8(1): p. 1-9.
37.J. D. Campbell, Dynamic plasticity: macroscopic and microscopic aspects. Materials Science and Engineering, 1973. 12(1): p. 3-21.
38.D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys. Vol. III, ASM, 1970: p. 951.
39.J. D. Campbell and W. G. Ferguson, The temperature and strain-rate dependence of the shear strength of mild steel. Philosophical Magazine, 1970. 21(169): p. 63-82.
40.A. Seeger, CXXXII. The generation of lattice defects by moving dislocations, and its application to the temperature dependence of the flow-stress of FCC crystals. Philosophical Magazine, 1955. 46(382): p. 1194-1217.
41.H. Conrad, Thermally activated deformation of metals. JOM, 1964. 16(7): p. 582-588.
42.M. A. Meyers, D. J. Benson, O. Vöhringer, B. K. Kad, Q. Xue and H. H. Fu, Constitutive description of dynamic deformation: physically-based mechanisms. Materials Science and Engineering: A, 2002. 322(1): p. 194-216.
43.W. G. Ferguson, A. Kumar and J. E. Dorn, Dislocation damping in aluminum at high strain rates. Journal of Applied Physics, 1967. 38(4): p. 1863-1869.
44.U. S. Lindholm and L. M. Yeakley, Dynamic deformation of single and polycrystalline aluminium+. Journal of the Mechanics and Physics of Solids, 1965. 13(1): p. 41-53.
45.B. J. D. Campbell and A. R. Dowling, The behaviour of materials subjected to dynamic incremental shear loading. Journal of the Mechanics and Physics of Solids, 1970. 18(1): p. 43-63.
46.Y. Bai and B. Dodd, Adiabatic shear localization: occurrence, theories and applications. Vol. 2. 1992: Pergamon Press Oxford,, UK.
47.Z. Gronostajski, The constitutive equations for FEM analysis. Journal of Materials Processing Technology, 2000. 106(1): p. 40-44.
48.L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study. Journal of Materials Processing Technology, 2007. 182(1): p. 319-326.
49.F. J. Zerilli and R. W. Armstrong, Dislocation‐mechanics‐based constitutive relations for material dynamics calculations. Journal of Applied Physics, 1987. 61(5): p. 1816-1825.
50.F. J. Zerilli and R. W. Armstrong, Constitutive equation for hcp metals and high strength alloy steels. High strain rate effects on polymer, metal and ceramic matrix composites and other advanced materials, 1995: p. 121-126.
51.D. Umbrello, R. M’saoubi and J. C. Outeiro, The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel. International Journal of Machine Tools and Manufacture, 2007. 47(3): p. 462-470.
52.U. R. Andrade, M. A. Meyers and A. H. Chokshi, Constitutive description of work-and shock-hardened copper. Scripta Metallurgica et Materialia;(United States), 1994. 30(7).
53.T. Holmquist and G. Johnson, Determination of constants and comparison of results for various constitutive models. 1991.
54.E. W. Collings, Materials properties handbook: titanium alloys. 1994: Asm Intl.
55.D. M. Brunette, Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications. 2001: Springer Verlag.
56.J. M. Lifshitz and H. Leber, Data processing in the split Hopkinson pressure bar tests. International Journal of Impact Engineering, 1994. 15(6): p. 723-733.
57.M. V. Popa, D. Raducanu, E. Vasilescu, P. Drob, D. Cojocaru, C. Vasilescu, S. Ivanescu and J. C. Rosca, Mechanical and corrosion behaviour of a Ti‐Al‐Nb alloy after deformation at elevated temperatures. Materials and corrosion, 2008. 59(12): p. 919-928.
58.W. S. Lee and H. F. Lam, The deformation behaviour and microstructure evolution of high-strength alloy steel at high rate of strain. Journal of Materials Processing Technology, 1996. 57(3): p. 233-240.
59.S. Esmaeili, L. M. Cheng, A. Deschamps, D. J. Lloyd and W. J. Poole, The deformation behaviour of AA6111 as a function of temperature and precipitation state. Materials Science and Engineering: A, 2001. 319: p. 461-465.
60.B. Viguier, Dislocation densities and strain hardening rate in some intermetallic compounds. Materials Science and Engineering: A, 2003. 349(1): p. 132-135.
61.D. Chu and J. W. Morris, The influence of microstructure on work hardening in aluminum. Acta materialia, 1996. 44(7): p. 2599-2610.
62.J. Harding, Effect of temperature and strain rate on strength and ductility of four alloy steels. Metals Technology, 1977. 4: p. 6-16.
63.L. Shi and D. O. Northwood, The mechanical behavior of an AISI type 310 stainless steel. Acta metallurgica et materialia, 1995. 43(2): p. 453-460.
64.B. Dodd and Y. Bai, Ductile fracture and ductility. 1987.
65.L. Bolzoni, E. Ruiz-Navas, E. Neubauer and E. Gordo, Mechanical properties and microstructural evolution of vacuum hot-pressed titanium and Ti–6Al–7Nb alloy. Journal of the mechanical behavior of biomedical materials, 2012. 9: p. 91-99.
66.W. J. Lepkowski and J. W. Holladay, The Physical Properties of Titanium and Titanium Alloys. 1957, Battelle Memorial Inst. Titanium Metallurgical Lab., Columbus, Ohio.
67.E. D. Marquardt, J. P. Le and R. Radebaugh, Cryogenic material properties database. Cryocoolers 11, 2002: p. 681-687.
68.R. G. Munro, Material properties of titanium diboride. Journal of Research of the National Institute of Standards and Technology, 2000. 105(5): p. 709-720.
69.W. F. Cui, Z. Jin, A. H. Guo and L. Zhou, High temperature deformation behavior of α+ β-type biomedical titanium alloy Ti–6Al–7Nb. Materials Science and Engineering: A, 2009. 499(1): p. 252-256.
70.A. R. Shahan and A. K. Taheri, Adiabatic shear bands in titanium and titanium alloys: a critical review. Materials & Design, 1993. 14(4): p. 243-250.
71.M. Nabil Bassim and N. Panic, High strain rate effects on the strain of alloy steels. Journal of Materials Processing Technology, 1999. 92: p. 481-485.
72.G. A. Li, L. Zhen, C. Lin, R. S. Gao, X. Tan and C. Y. Xu, Deformation localization and recrystallization in TC4 alloy under impact condition. Materials Science and Engineering: A, 2005. 395(1): p. 98-101.
73.S. P. Timothy and I. M. Hutchings, The structure of adiabatic shear bands in a titanium alloy. Acta Metallurgica, 1985. 33(4): p. 667-676.
74.E. Robert, R. Hill and R. Abbaschian, Physical metallurgy principles. PWS-Kent, 3Ed, Boston, 1992.
75.R. K. Ham, The determination of dislocation densities in thin films. Philosophical Magazine, 1961. 6(69): p. 1183-1184.
76.Y. Tomota, P. Lukas, S. Harjo, J. H. Park, N. Tsuchida and D. Neov, In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation. Acta materialia, 2003. 51(3): p. 819-830.
77.M. E. Kassner, Taylor hardening in five-power-law creep of metals and Class M alloys. Acta materialia, 2004. 52(1): p. 1-9.
78.M. E. Kassner, A case for Taylor hardening during primary and steady-state creep in aluminium and type 304 stainless steel. Journal of Materials Science, 1990. 25(4): p. 1997-2003.
79.J. Gubicza, N. Chinh, J. Lábár, S. Dobatkin, Z. Hegedus and T. Langdon, Correlation between microstructure and mechanical properties of severely deformed metals. Journal of alloys and compounds, 2009. 483(1-2): p. 271-274.
80.X. N. Cheng, H. X. Xu, X. J. Xu and Z. L. Zhang. Tensile Properties and Dislocation Strengthening of Commercial Pure Titanium Processed by Equal-Channel Angular Pressing at Liquid Nitrogen Temperature. 2011: Trans Tech Publ.
81.S. S. Hazra, A. A. Gazder and E. V. Pereloma, Stored energy of a severely deformed interstitial free steel. Materials Science and Engineering: A, 2009. 524(1): p. 158-167.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊