跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張駿愷
研究生(外文):Chun-KaiChang
論文名稱:應用晶格波茲曼法模擬奈米流體熱對流問題
論文名稱(外文):Lattice Boltzmann simulation of nanofluid natural/mixed convection heat transfer
指導教授:陳朝光陳朝光引用關係
指導教授(外文):Cha’o-Kuang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:晶格波茲曼法方型空穴垂直通道奈米流體自然對流混合對流
外文關鍵詞:Lattice Boltzmann methodSquare enclosureVertical channelNanofluidsNatural convectionMix convection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
本文使用晶格波茲曼法模擬密閉空穴與兩平行平板間垂直通道之奈米流體自然對流與混合對流,屬於二維穩態不可壓縮之流場 ,考慮在不同奈米流體濃度(0%、2%、4%)、不同瑞里數及不同理查森數的情況下對平均紐賽數之影響,並在垂直通道內加入一孔穴,考慮孔穴不同高寬比對局部紐賽數及平均紐賽數和溫度場之影響。並適當的設定入口的均勻流速度,以確保流場的適用性及避免太大的壓縮效應。

數值模擬結果顯示奈米流體之平均紐賽數較純水高,且隨著濃度的上升,平均紐賽數的增加更加顯著,同時平均紐賽數也會隨著瑞里數的增加帶來的溫差變化及理查森數的減少造成的特徵速度變快隨之升高,而孔穴之高寬比對孔穴內之流場及渦旋形狀有著顯著影響,且隨著孔穴愈大則平均紐賽數愈低。

In the present study, mathematical modeling is performed to simulate two-dimensional incompressible natural and mix convection of nanofluids in a vertical square enclosure and channel using the lattice Boltzmann method(LBM).Consider the effects of different concentration of nanofluids (0%, 2%, 4%), Rayleight number and Richardson number to averaged Nusselt number, and Consider the effects of putting a rectangle hole in vertical channel with different ratio of height and length to Nusselt number, averaged Nusselt number, and temperature field. The inlet velocity is chosen appropriately, so as to ensure the reasonable adaptation of fluid field and to avoid un-physical compressible effect.

Numerical results show that the averaged Nusselt number of nanofluids can be higher than pure water. Increasing the nanoparticle volume fraction will enhance the averaged Nusselt number. The averaged Nusselt number also increases by the temperature change caused by the increase of the Rayleigh number, the characteristic velocity change caused by Richardson number reduction. In the presence of significantly effects of the ratio of height and length of the rectangle hole to velocity field and vortex shape, and the averaged Nusselt number will decrease when the rectangle hole increased.

摘要I
ABSTRACTII
誌謝III
目錄IV
表目錄VI
圖目錄VII
符號說明XIII
第一章 緒論1
1-1 研究背景與動機1
1-2 文獻回顧3
1-3 本文架構6
第二章 數值方法與理論分析7
2-1 晶格波茲曼法簡介7
2-2 連續波茲曼方程式到晶格波茲曼方程式7
2-3 描述速度場的晶格波茲曼方法10
2-4 描述溫度場的晶格波茲曼方法13
2-5 浮力效應項的處理方法14
2-6 奈米流體理論分析16
2-7 速度場邊界處理方法18
2-7-1 完全反彈邊界18
2-7-2 速度與壓力邊界18
2-8 溫度場邊界處理方法21
第三章 數值方法驗證24
3-1 晶格波茲曼法模擬問題的步驟與程式流程24
3-2 自然對流於方型空穴驗證25
3-3 混和對流於平行平板間垂直通道驗證28
第四章 結果與討論36
4-1 方型空穴內奈米流體自然對流數值分析36
4-2 側壁驅動方型空穴內奈米流體混合對流數值分析40
4-3 兩平行平板間垂直通道自然對流數值分析45
4-3-1 平行平板間垂直通道自然對流流經一矩形孔穴47
4-4 兩平行平板間垂直通道混合對流數值分析50
4-4-1 平行平板間垂直通道混合對流流經一矩形孔穴53
第五章 結論與未來展望98
5-1 結論98
5-2 未來研究方向與建議99
參考文獻100

Abbassi, Hassen, & Turki, Said., & Nasrallah, Sassi Ben., “Numerical investigation of forced convection in a plane channel with a built-in triangular prism, Int. J. Therm. Sci., Vol. 40, pp. 649-658, 2001.
Alexander, F. J., & Chen, S., & Stering, J. D., “Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, Vol. 47, pp. R2249-2252, 1993.
Bhatnagar, P.L., & Gross, E.P., & Krook, M., “A model for collision processes in gases. Ⅰ. Small amplitude processes in charged and nrutral one-component systems, Phys. Rev., Vol. 94(3), pp. 511-525, 1954.
Breuer, M., & Bernsdorf, J., & Zeiser, T., & Durst, F., “Accurate computations of the laminar flow past a square cylinder based on two different method: lattice-Boltzmann and finite-volume, Int. J. Heat Fluid Flow., Vol. 94(3), pp. 511-525, 2000.
Chakraborty, Jyoti, & Verma, Nishith, & Chhabra, R. P., “Wall effects in flow past a circular cylinder in a plane channel: a numerical study, Chem. Eng. Process., Vol. 43, pp. 1529-1537, 2004.
Chen, Chao-Kuang, & Yen, Tzu-Shuang, & Yang, Yue-Tzu, “Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle, Int. J. Heat Mass Transfer, Vol. 49(5-6), pp. 1195-1204, 2006.
Chen, Hudong, & Chen, Shiyi, & Matthaeus, William H., “Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, Vol. 45, pp. R5339-5342, 1992.
Choi, S.U.S., “Enhancing Thermal Conductivity of fluids with Nanoparticles, ASME, FED-vol. 231/MD-vol. 66, pp. 99-105, 1995
Chen, Shiyi, & Martinez, Daniel, “On boundary condition in lattice Boltzmann methods, Phys. Fluids, Vol. 8(9), pp. 2527-2536, 1996.
Chen, Shiyi, & Doolen, Gary D., “Lattice Boltzmann model for fluid flows, Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364, 1998.
d’Humiéres, D., & Lallemand, P., “Numerical simulations of hydrodynamics with lattice gas automata in two dimensions, Complex Systems, Vol. 1, pp. 599-632, 1987.
Dieter, A. Wolf-Gladrow, “Lattice-gas cellular autimata and lattice Boltzmann models, Springer, Germany, 2000.
Filippova, Olga, & Hänel, Dieter, “Grid refinement for lattice-BGK models, J. Comput. Phys., Vol. 147(1), pp. 219-228, 1998.
Grunau, Daryl, & Chen, Shiyi, & Eggert, Kenneth, “A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids A, Vol. 5(10), pp. 2557-2562, 1993.
Guo, Zhaoli, & Zhao, T. S., “Lattice Boltzmann model for incompressible flows through porous media, Phys. Rev. E, Vol. 66, pp. 036304, 2002.
Guo, Zhaoli, & Zheng, Chuguang, “An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids, Vol. 14(6), pp. 2007-2010, 2002.
Guo, Z. Y., & Tao, W. Q., & Shah, R. K., “The field synergy (coordination) principle and its application in enhancing single phase convective heat transfer, Int. J. Heat Mass Transfer, Vol. 48, pp. 1797-1807, 2005.
Gupta, Abhishek K., & Sharma, Atul, & Chhabra, Rajendra P., & Eswaran, Vinayak, “Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: Momentum and heat-transfer characteristics, Ind. Eng. Chem. Res., Vol. 42, pp. 5674-5686, 2003.
He, Xiaoyi, & Chen, Shiyi, & Doolen, Gary D., “A novel thermal model for the lattice Boltzmann in incompressible limit, J. Comput. Phys., Vol. 146, pp. 282-300, 1998.
He, Xiaoyi, & Luo, Li-Shi, “Lattice Boltzmann model for the incompressible Navier-Stokes equation, J. Stat. Phys., Vol. 88(3/4), pp. 927-944, 1997.
He, Xiaoyi, & Luo, Li-Shi, & Dembo, Micah, “Some progress in lattice Boltzmann method. Part1. Nonuniform mesh grids, J. Comput. Physics, Vol. 129(2), pp. 357-363, 1996.
Higuera, F. J., & Jiménez, J., “Boltzmann approach to lattice gas simulations, Europhys. Lett., Vol. 9(7), pp. 663-668, 1989.
Higuera, F. J., & Succi, S., & Benzi, R., “Lattice gas dynamics with enhanced collisions, Europhys. Lett., Vol. 9(4), pp. 345-349, 1989.

Hou, Shuling, & Zou, Qisu, “Simulation of cavity flow by the lattice Boltzmann method , J. Comput. Phys., Vol. 118, pp. 329-347, 1995.
Huang, Kerson, “Statistical mechanics, John Wiley & Sons, 1987.
Inamuro, Takaji, & Yoshino, Masato, & Ogino, Fumimaru, “A non-slip condition for lattice Boltzmann simulattion, Phys. Fluids, Vol. 7(12), pp. 2928-2930, 1995.
Incropera, Frank P., & DeWitt, David P., “Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2002.
K. Khanafer, K. Vafai, M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat and Mass Transfer 46, 3639-3653, 2003.
Korichi, Abdelkader, & Oufer, Lounes, “Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls, Int. J. Therm. Sci., Vol. 44, pp. 644-655, 2005.
Lim, C.Y., & Shu, C., & Niu, X. D., & Chew, Y.T., “Application of lattice Boltzmann model to simulate microchannel flows, Physics of Fluids, Vol. 14(7), pp. 2299-2308, 2002.
Lai, F.-H, and Y.-T. Yang, “Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure, int. J. Thermal Sciences, 50(10): 1930-1941, 2011
McNamara, Guy R., & Zanetti, Gianluigi, “Use of the Boltzmann equation to simulate lattice-gas automata, Physical Review Letters, Vol. 61(20), pp. 2332-2335, 1988.
Mei, Renwei, & Luo, Li-Shi, “An Accurate curved boundary treatment in the lattice Boltzmann method, J. Comput. Phys., Vol. 155, pp. 307-330, 1999.
Munson, Bruce R., & Young, Donald F., & Okiishi, Theodore H., “Fundamentals of fluid mechanics, Wiley, New York, 1998.
Noble, David R., & Chen, Shiyi, & Georgiadis, John G.., “A consistent hydrodynamic boundary condition for the lattice Boltzmann method, Phys. Fluids, Vol. 7(1), pp. 203-209, 1995.
Peng, Y., & Shu, C., & Chew Y. T., “Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E, Vol. 68, pp. 026701, 2003.
Ostrach, S., Natural convetion in enclosures, J. Heat Transfer, 50th Anniversary Issue, 110: 1175-1189, 1998
Qian, Y. H., & d’Humiéres, D., & Lallemand, P., “Lattice BGK models for Navier-Stokes equation, Europhy. Lett., Vol. 17(6), pp. 479-484, 1992.
Shan, Xiaowen, “Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method, Phys. Rev. E, Vol. 55, pp. 2780-2788, 1997.
Shu, C., & Niu, X. D., & Chew, Y. T., “Taylor-series expansion and least-square-based lattice Boltzmann model: Two dimensional fprmulational and its application, Phys. Rev. E, Vol. 65, pp. 036708, 2002.
Shu, C., & Peng, Y., & Chew, Y. T., “ Simulation of natural convection in a square cavity by Taylor series expansion and least-square-based lattice Boltzmann method, Int. J. Mod. Phys. C, Vol. 13, pp. 1399-1414, 2002.
Skordos, P. A., “Initial and boundary conditions for the lattice Boltzmann method, Phys. Rev. E, Vol. 48(6), pp. 4823-4842, 1993.
Succi, S., “The lattice Boltzmann equation for fluid dynamics and beyond, Oxford university press, New York, 2001.
Succi, S., & Vergassola, M., & Benzi, R., “Lattice Boltzmann scheme for two-dimensional magnetohydrodynamics, Phys. Rev. A, Vol. 43(8), pp. 4521-4524, 2001.
Tao, Wen Quan., & Guo, Zeng Yuan., & Wang, Bu Xuan, “Field synergy principle for enhancing convective heat transfer-its extension and numerical verification, Int. J. Heat Mass Transfer, Vol. 45, pp. 3849-3856, 2002.
Tao, W. Q., & He, Y. L., & Wang, Q. W., & Qu, Z. G., & Song F. Q., “A unified analysis on enhancing single phase convective heat transfer with field synergy principle, Int. J. Heat Mass Transfer, Vol. 45, pp. 4871-4879, 2002.
Valencia, Alvaro, “Heat transfer enhancement in a channel with a built-in square cylinder, Int. Commun. Heat Mass Transf., Vol. 22(1), pp. 47-58, 1995.
Yang, K. T., “Transitions and bifurcations in laminar buoyant flows in confined enclosures, J. Heat Transfer, 110: 1191-1204, 1988
Youngseuk Keehm, & Tapan Mukerji, & Amos Nur, “Computational rock physics at the pore scale: transport properties and diagenesis in realistic pore geometries, The Leading Edge, Vol. 20(2), pp. 180-183, 2001.
Yang, Y. T., and Lai, F. H., “Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a microchannel using the lattice Boltzmann method Int. Communications in Heat and Mass Transfer, 38(5): 607-614,2011
Ziegler, D. P., “Boundary conditions for lattice Boltzmann simulation, J. Stat. Phys., Vol. 71, pp. 1171-1177, 1993.
Zou, Qisu, & He, Xiaoyi, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, Vol. 9(6), pp. 1591-1598, 1997.
Zovatto, Luigino, & Pedrizzetti, Gianni, “Flow about a cylinder between parallel walls, J. Fluid Mech., Vol. 440, pp. 1-25, 2001.
王竹溪,「統計物理學導論」,凡異出版社,1985。
田偉中,「應用晶格波茲曼法與場協同理論於質子交換膜燃料電池雙極板流道之分析」,國立成功大學博士論文,2007。
江孟璋,「應用FDLBM方法在高速進給熱傳系統之研究現象」,國立中正大學碩士論文,2003。
汪志誠,「熱力學與統計物理」,凡異出版社,1996。
吳大猷,「理論物理-熱力學、氣體運動及統計力學」,聯經出版社,1979。
林建中,「矩形容器內奈米流體之自然對流熱傳現象之研究」,國立成功大學碩士論文,2003。
邵揮洲,「限定空間內自然及混合對流熱傳現象之研究」,國立成功大學博士論文,1987。
祝玉學、趙學龍譯,「物理系統的元胞自動機模擬」,北京清華大學出版社,2003。
胡寬裕,「晶格波茲曼法於複雜幾何邊界之應用」,國立清華大學碩士論文,2003。
郭照立,「模擬不可壓縮流體流動的格子Boltzmann方法研究」,華中理工大學博士論文,2000。
張靚妍,「以晶格波茲曼法模擬液滴衝擊平板之變形過程」,國立中正大學碩士論文,2002。
過增元,「對流換熱的物理機制及其控制:速度與熱流場的協同」,科學通報,第45卷,第9期,pp. 2118-2122,2000。
過增元、黃素逸,「場協同原理與強化熱傳新技術」,中國電力出版社,2004。
楊志強,「以晶格波茲曼法模擬共軛熱傳」,國立中正大學碩士論文,2001。
韓光澤、華責、魏耀東,「傳遞過程強化的新途徑-場協同」,自然雜誌24,273-277,2002。
顏子翔,「應用晶格波茲曼法與場協同理論於不同阻礙物之背向階梯管道熱流分析」,國立成功大學博士論文,2006。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top