跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/30 06:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張皓欽
研究生(外文):Hao-ChinChang
論文名稱:複合式脈衝陽極氧化技術於室溫製備多孔性氧化鋁模板之研究
論文名稱(外文):A study on the fabrication of porous aluminum oxide template at room temperature using hybrid pulse anodization
指導教授:鍾震桂
指導教授(外文):Chen-Kuei Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:91
中文關鍵詞:奈米多孔結構陽極氧化鋁複合式脈衝陽極氧化
外文關鍵詞:nanostructureanodic aluminum oxidehybrid pulse anodization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究所推廣之複合式脈衝陽極氧化(hybrid pulse anodization, HPA)技術的目的為抑制過多焦耳熱(Joule’s heat)的產生,並在相對較高的製程溫度中製備奈米多孔性陽極氧化鋁(anodic aluminum oxide, AAO)模板。本文以鋁薄片(aluminum foil)為主進行HPA技術,氧化鋁在經過電場輔助的陽極氧化製程後,可以形成更厚的氧化鋁層,並且產生規則排列的孔洞結構,其孔洞通道有極佳的垂直性。因此本實驗即選擇在草酸電解液中,針對各種陽極氧化條件,如電解液濃度、電解液溫度、施加正電位和脈衝週期,製備孔洞間距100 nm為主的AAO模板後,以場發射掃描式電子顯微鏡(FE-SEM)觀察AAO孔洞形貌,並使用ImageJ和WSxM等軟體去分析AAO孔洞表面形貌的SEM影像,加以探討當改變製程參數會有何影響並且量化之。
本研究成功將HPA技術結合傳統定電位(potentiostatic)陽極氧化技術在室溫(25 °C)下以較短的時間內製備出高規則排列之AAO模板,最後,嘗試以AAO模板為模具,以電化學中陰極還原的方法,並藉此沉積出不同深寬比之銅奈米結構陣列。

The purpose of this thesis is to fabricate highly ordered anodic aluminum oxide (AAO) template in oxalic acid at room temperature (25 °C) by hybrid pulse anodization (HPA) technique. In this work, we expect HPA technique could suppress Joule’s heat generation effectively for replacing cooling equipment during electrochemical reaction. After anodization with uniform electric-field strength, surface of aluminum foil was transforming into thick oxide layer and producing ordered pore array, and hence, each pore has good vertical channel. The effects of various anodizing factors on structural characteristics of AAO template were discussed in details, including applied positive potential, electrolyte concentration, electrolyte temperature and pulse periods. In order to quantify these influences mentioned before, the morphology of AAO template was measured by filed-emission scanning electron microscope. Thus, the structure were analyzed by image process software (ImageJ and WSxM 5.0).
Hence, we demonstrate that HPA combined with conventional potentiostatic process could fabricate high quality of AAO template at room temperature than HPA technique only. Finally, we try to form different aspect ratio of copper nanostructure by electrochemical deposition.

摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
1-3 本文架構 6
第二章 文獻回顧 7
2-1 鋁之陽極氧化 7
2-1-1 多孔型陽極氧化鋁結構 7
2-1-2 孔洞自組裝機制 9
2-1-3 陽極氧化之化學反應 11
2-2 陽極氧化參數 14
2-2-1 陽極電位 14
2-2-2 電解液溫度 15
2-2-3 電解液種類和濃度 16
2-3 陽極處理製程 19
2-3-1 兩階段陽極氧化 19
2-3-2 預圖案化陽極氧化 20
2-3-3 高電位陽極氧化 21
2-3-4 脈衝陽極氧化 23
2-3-5 複合式脈衝陽極氧化 23
2-4 氧化鋁模板輔助成長 25
第三章 實驗方法 27
3-1 實驗流程 28
3-2 實驗設備 30
3-3 實驗原料 33
3-4 實驗步驟 35
3-4-1 陽極氧化步驟 35
3-4-2 電化學沉積步驟 36
3-5 觀測與分析方法 39
第四章 結果與討論 41
4-1 電化學拋光結果 41
4-2 複合式脈衝製程參數對結構的影響 43
4-2-1 電解液濃度 43
4-2-2 電解液溫度 49
4-2-3 陽極施加電位 57
4-2-4 脈衝週期 66
4-3 複合式兩階段陽極氧化製程 73
4-4 電化學沉積銅奈米結構 78
第五章 結論與未來工作 81
5-1 結論 81
5-2 未來工作 83
參考文獻 84
自述 91

[1]F. Li, L. Zhang, and R. M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide, Chemistry of Materials, vol. 10, pp. 2471-2480, 1998.
[2]H. Masuda and M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask, Japanese Journal of Applied Physics Part 2-Letters, vol. 35, pp. L126-L129, 1996.
[3]M. S. Sander and L.-S. Tan, Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates, Advanced Functional Materials, vol. 13, pp. 393-397, 2003.
[4]Y. Piao, H. Lim, J. Chang, W. Lee, and H. Kim, Nanostructured materials prepared by use of ordered porous alumina membranes, Electrochimica Acta, vol. 50, pp. 2997-3013, 2005.
[5]K. Yasui, K. Nishio, and H. Masuda, Fabrication of nanocomposites by filling nanoholes in highly ordered anodic porous alumina by vacuum deposition of metal, Japanese Journal of Applied Physics, vol. 44, pp. L1181-L1183, 2005.
[6]J.-H. Kim, S. Khanal, M. Islam, A. Khatri, and D. Choi, Electrochemical characterization of vertical arrays of tin nanowires grown on silicon substrates as anode materials for lithium rechargeable microbatteries, Electrochemistry Communications, vol. 10, pp. 1688-1690, 2008.
[7]A. Santos, L. Vojkuvka, J. Pallarés, J. Ferré-Borrull, and L. F. Marsal, Cobalt and nickel nanopillars on aluminium substrates by direct current electrodeposition process, Nanoscale Research Letters, vol. 4, pp. 1021-1028, 2009.
[8]T. Yanagishita, T. Endo, Y. Yamaguchi, K. Nishio, and H. Masuda, Ordered pillar array structures of TiO2 by nanoimprinting using anodic porous alumina as molds, Chemistry Letters, vol. 38, pp. 274-275, 2009.
[9]G. D. Sulka, A. Brzózka, L. Zaraska, and M. Jaskuła, Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays, Electrochimica Acta, vol. 55, pp. 4368-4376, 2010.
[10]H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science, vol. 268, pp. 1466-1468, 1995.
[11]X. Sheng, J. Liu, N. Coronel, A. M. Agarwal, J. Michel, and L. C. Kimerling, Integration of Self-assembled porous alumina and distributed bragg reflector for light trapping in Si photovoltaic devices, IEEE Photonics Tcehnology Letters, vol. 22, pp. 1394-1396, 2010.
[12]A. Aguilera, V. Jayaraman, S. Sanagapalli, R. Sureshsingh, K. Sampson, and V. Singh, Porous alumina templates and nanostructured CdS for thin film solar cell applications, Solar Energy Materials and Solar Cells, vol. 90, pp. 713-726, 2006.
[13]N. Haberkorn, J. S. Gutmann, and P. Theato, Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: toward ordered bulk-heterojunction solar cells, ACS NANO, vol. 3, pp. 1415-1422, 2009.
[14]J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H.-j. Kim, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, High-Performance Nanostructured Inorganic−Organic Heterojunction Solar Cells, Nano Letters, vol. 10, pp. 2609-2612, 2010.
[15]J.-Y. Juang and D. B. Bogy, Nanotechnology advances and applications in information storage, Microsystem Technologies, vol. 11, pp. 950-957, 2005.
[16]J.S. Jung, L. Malkinski, J.H. Lim, M. Yu, C.J. O'Connor, H.O. Lee, and E. M. Kim, Fabrication and magnetic properties of Co nanostructures in AAO membranes, Bulletin of the Korean Chemical Society, vol. 29, pp. 758-760, 2008.
[17]P. Deb, H. Kim, V. Rawat, M. Oliver, S. Kim, M. Marshall, E. Stach, and T. Sands, Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography, Nano Letters, vol. 5, pp. 1847-1851, 2005.
[18]T. Dai, B. Zhang, X. N. Kang, K. Bao, W. Z. Zhao, D. S. Xu, G. Y. Zhang, and Z. Z. Gan, Light extraction improvement from GaN-based LED with nano-patterned surface using AAO template, IEEE Photonics Technology Letters, vol. 20, pp. 1974-1976, 2008.
[19]T. Hong, T. Chen, G. Z. Ran, J. Wen, Y. Z. Li, T. Dai, and G. G. Qin, Enhanced electroluminescence from nanoscale silicon p+–n junctions made with an anodic aluminum oxide pattern, Nanotechnology, vol. 21, p. 025301, 2010.
[20]L. Juhász and J. Mizsei, Humidity sensor structures with thin film porous alumina for on-chip integration, Thin Solid Films, vol. 517, pp. 6198-6201, 2009.
[21]H. Masuda, F. Hasegawa, and S. Ono, Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, Journal of The Electrochemical Society, vol. 144, pp. L127-L130, 1997.
[22]A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, Journal of Applied Physics, vol. 84, pp. 6023-6026, 1998.
[23]H. Masuda, K. Yada, and A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution, Japanese Journal of Applied Physics, vol. 37, pp. L1340-L1342, 1998.
[24]M. A. Kashi, A. Ramazani, M. Raoufi, and A. Karimzadeh, Self-ordering of anodic nanoporous alumina fabricated by accelerated mild anodization method, Thin Solid Films, vol. 518, pp. 6767-6772, 2010.
[25]L. Zaraska, G. D. Sulka, and M. Jaskuła, The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid, Surface and Coatings Technology, vol. 204, pp. 1729-1737, 2010.
[26]F. Keller, M. S. Hunter, and D. L. Robinson, Structural features of oxide coatings on aluminum, Journal of The Electrochemical Society, vol. 100, pp. 411-419, 1953.
[27]G. E. Thompson, Porous anodic alumina: fabrication, characterization and applications, Thin Solid Films, vol. 297, pp. 192-201, 1997.
[28]O. Jessensky, F. Müller, and U. Gösele, Self-organized formation of hexagonal pore arrays in anodic alumina, Applied Physics Letters vol. 72, pp. 1173-1175, 1998.
[29]I. Vrublevsky, V. Parkoun, V. Sokol, J. Schreckenbach, and G. Marx, The study of the volume expansion of aluminum during porous oxide formation at galvanostatic regime, Applied Surface Science, vol. 222, pp. 215-225, 2004.
[30]S. K. Thamida and H.-C. Chang, Nanoscale pore formation dynamics during aluminum anodization, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 12, p. 240, 2002.
[31]Y. Li, Z. Y. Ling, S. S. Chen, and J. C. Wang, Fabrication of novel porous anodic alumina membranes by two-step hard anodization, Nanotechnology, vol. 19, p. 225604, 2008.
[32]L. Yi, L. Zhiyuan, C. Shuoshuo, H. Xing, and H. Xinhua, Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization, Chemical Communications, vol. 46, p. 309, 2010.
[33]W. Chen, J.-S. Wu, and X.-H. Xia, Porous anodic alumina with continously manipulated size/cell, ACS NANO, vol. 2, pp. 959-965, 2008.
[34]T. Aerts, I. De Graeve, and H. Terryn, Control of the electrode temperature for electrochemical studies: A new approach illustrated on porous anodizing of aluminium, Electrochemistry Communications, vol. 11, pp. 2292-2295, 2009.
[35]T. Aerts, J.-B. Jorcin, I. De Graeve, and H. Terryn, Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium, Electrochimica Acta, vol. 55, pp. 3957-3965, 2010.
[36]G. E. Thompson and G. C. Wood, Porous anodic film formation on aluminum, Nature, vol. 290, pp. 230-232, 1981.
[37]S. Ono, M. Saito, and H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochimica Acta, vol. 51, pp. 827-833, 2005.
[38]S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A. Yasumori, Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization, Journal of The Electrochemical Society, vol. 153, pp. B384-B391, 2006.
[39]Y. F. Jia, H. H. Zhou, P. Luo, S. L. Luo, J. H. Chen, and Y. F. Kuang, Preparation and characteristics of well-aligned macroporous films on aluminum by high voltage anodization in mixed acid, Surface & Coatings Technology, vol. 201, pp. 513-518, 2006.
[40]H. Masuda, K. Kanezawa, and K. Nishio, Fabrication of ideally ordered nanohole arrays in anodic porous alumina based on nanoindentation using scanning probe microscope, Chemistry Letters, pp. 1218-1219, 2002.
[41]M. Jaafar, D. Navas, M. Hernández-Vélez, J. L. Baldonedo, M. Vázquez, and A. Asenjo, Nanoporous alumina membrane prepared by nanoindentation and anodic oxidation, Surface Science, vol. 603, pp. 3155-3159, 2009.
[42]C. Y. Liu, A. Datta, and Y. L. Wang, Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces, Applied Physics Letters, vol. 78, p. 120, 2001.
[43]B. Chen and K. Lu, Moiré pattern nanopore and nanorod arrays by focused ion beam guided anodization and nanoimprint molding, Langmuir, vol. 27, pp. 4117-4125, 2011.
[44]S.-H. Chen, D.-S. Chan, C.-K. Chen, T.-H. Chang, Y.-H. Lai, and C.-C. Lee, Nanoimprinting pre-patterned effects on anodic aluminum oxide, Japanese Journal of Applied Physics, vol. 49, p. 015201, 2010.
[45]H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, Square and triangular nanohole array architectures in anodic alumina, Advanced Materials, vol. 13, pp. 189-192, 2001.
[46]J. Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. r. Schilling, and U. Gösele, Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers, Journal of Applied Physics, vol. 94, p. 4757, 2003.
[47]S. Fournier-Bidoz, V. Kitaev, D. Routkevitch, I. Manners, and G. Ozin, Highly ordered nanosphere imprinted nanochannel alumina (NINA), Advanced Materials, vol. 16, pp. 2193-2196, 2004.
[48]W. Lee, R. Ji, U. Gösele, and K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Materials, vol. 5, pp. 741-747, 2006.
[49]W. Lee, R. Scholz, and U. Gösele, A continuous process for structurally well-defined Al2O3 nanotubes based on pulse anodization of aluminum, Nano Letters, vol. 8, pp. 2155-2160, 2008.
[50]W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium, Nature Nanotechnology, vol. 3, pp. 234-239, 2008.
[51]D. Losic and M. Lillo, Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization, Small, vol. 5, pp. 1392-1397, 2009.
[52]W. Lee, The anodization of aluminum for nanotechnology applications, JOM, vol. 62, pp. 57-63, 2010.
[53]W. Lee and J.-C. Kim, Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization, Nanotechnology, vol. 21, p. 485304, 2010.
[54]W. Lee, J.-C. Kim, and U. Gösele, Spontaneous Current Oscillations during Hard anodization of aluminum under potentiostatic conditions, Advanced Functional Materials, vol. 20, pp. 21-27, 2010.
[55]A. Santos, L. Vojkuvka, J. Pallarés, J. Ferré-Borrull, and L. F. Marsal, In situ electrochemical dissolution of the oxide barrier layer of porous anodic alumina fabricated by hard anodization, Journal of Electroanalytical Chemistry, vol. 632, pp. 139-142, 2009.
[56]I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments, vol. 78, p. 013705, 2007.
[57]A. Rauf, M. Mehmood, M. Asim Rasheed, and M. Aslam, The effects of electropolishing on the nanochannel ordering of the porous anodic alumina prepared in oxalic acid, Journal of Solid State Electrochemistry, vol. 13, pp. 321-332, 2008.
[58]D. Ma, S. Li, and C. Liang, Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions, Corrosion Science, vol. 51, pp. 713-718, 2009.
[59]K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gösele, Self-ordering regimes of porous alumina: The 10% porosity rule, Nano Letters, vol. 2, pp. 677-680, 2002.
[60]S. Ono, M. Saito, and H. Asoh, Self-ordering of anodic porous alumina induced by local current concentration: Burning, Electrochemical and Solid-State Letters, vol. 7, p. B21, 2004.
[61]A. Santos, J. M. Montero-Moreno, J. Bachmann, K. Nielsch, P. Formentín, J. Ferré-Borrull, J. Pallarès, and L. s. F. Marsal, Understanding pore rearrangement during mild to hard transition in bilayered porous anodic alumina membranes, ACS Applied Materials & Interfaces, vol. 3, pp. 1925-1932, 2011.
[62]C. K. Chung, R. X. Zhou, T. Y. Liu, and W. T. Chang, Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature, Nanotechnology, vol. 20, p. 055301, 2009.
[63]C.-K. Chung, T. Y. Liu, and W. T. Chang, Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature, Microsystem Technologies, vol. 16, pp. 1451-1456, 2009.
[64]K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization, ACS NANO, vol. 2, pp. 302-310, 2008.
[65]S.-Z. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization, Advanced Materials, vol. 17, pp. 2115-2119, 2005.
[66]L. Vojkuvka, L. F. Marsal, J. Ferr´e-Borrull, P. Formentin, and J. Pallares, Self-ordered porous alumina membranes with large lattice constant fabricated by hard anodization, Superlattices and Microstructures, vol. 44, pp. 577-582, 2008.

電子全文 電子全文(網際網路公開日期:20220101)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top