# 臺灣博碩士論文加值系統

(3.235.185.78) 您好！臺灣時間：2021/07/29 23:17

:::

### 詳目顯示

:

• 被引用:1
• 點閱:221
• 評分:
• 下載:68
• 書目收藏:0
 本文主要以數值模擬三維鰭片散熱器之不可壓縮紊流流場與熱傳特性，且工作流體為空氣。文中比較了兩種不同形狀的鰭片散熱器，包括圓形和方形，並討論了兩種鰭片散熱器在對齊式排列與交錯式排列之散熱性能。紊流統御方程式則是以有限體積法為基礎，配合三種根據雷諾平均Naviers-Stokes 近似的 紊流模型來求解本問題。在本文的研究範圍內，可實現化 紊流模型相對於另外兩個紊流模型在整體性能上表現較好。 往後的數值計算都將使用可實現化 紊流模型，其研究參數包含：鰭片高度H、鰭片直徑D和雷諾數Re，其研究探討的範圍為7mm〈H〈10mm、0.75mm〈D〈2mm及2000〈Re〈12600。將模擬結果與文獻上的實驗數據作驗證，其結果相吻合。圓形鰭片散熱器因為形狀相對於方形鰭片散熱器較為流線，所以在壓降方面較方形鰭片散熱器小，但是熱傳效益較不如方形鰭片散熱器。文中也發現交錯式排列對流場的擾動性較佳，故熱傳性能優於對齊式排列的鰭片散熱器。不管是交錯式或對齊式鰭片在熱阻、壓降和熵增都有相同的趨勢。 此外，在經過與實驗值的驗證後，文中利用基因演算法來對鰭片散熱器作最佳化，並以熵增為目標函數，計算其最小值，熵增可由壓降與熱阻計算而得。對於對齊式與交錯式鰭片散熱器，分別對其最佳化，且相對的性能分析將在文中討論。
 Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume-based finite-difference method by employing three well-known turbulence models based on Reynolds-averaged Navier-Stokes (RANS) approach. Overall performance of realizable turbulence model is much better in comparing with other turbulence models in the studied ranges. Subsequently, numerical computations are performed with the realizable turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7mm〈H〈10mm, 0.75mm〈D〈2mm, 2000〈Re〈12600, respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins is streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.In addition, after the validation of the numerical results, genetic algorithm (GA) is applied for the optimization of pin-fin heat sinks. Entropy generation due to heat transfer and pressure drop across pin-fins is minimized by using GA. Both in-line and staggered arrangement are studied and their relative performance is compared.
 中文摘要 I英文摘要 III誌謝 V目錄 VI表目錄 IX圖目錄 XI符號說明 XV第一章緒論 11-1研究動機與背景 11-2 文獻回顧 21-3本文探討之主題與方法 5第二章理論分析 112-1 空間流場分析 112-2 紊流模式 152-2.1 渦流黏滯模式(Eddy Viscosity Model) 152-2.2 牆函數法 192-3 邊界條件 242-4 數據計算 26第三章數值方法 313-1 概述 313-2 統御方程式的座標轉換 323-3 格點位置的配置 353-4 壓力修正方程式 363-5 差分方程式的解法 393-6 收斂條件 40第四章最佳化設計 424-1 概述 424-2 熵增最小化 434-3 反應曲面法 444-4 迴歸分析 464-4.1變異分析(Analysis of variance) 474-5 基因演算法 504-5.1 適應度 514-5.2 基因演算法編碼方式 524-5.3 基本基因演算法算子 534-5.4終止條件 57第五章結果與討論 645-1 網格獨立測試與數值驗證 655-2 不同紊流模式比較 695-3 流場與溫度場之特性分析 715-4 最佳化設計與分析 745-5 最佳組幾何尺寸之熱傳性能分析 77第六章結論與建議 1076-1結論 1076-2 建議 110參考文獻 112
 [1]Wirtz R.A. and Colban D.M., “Comparison of the Cooling Performance of Staggered and In-Line Arrays of Electronic Packages, Transactions of the ASME, Journal of Electronic Packaging, Vol. 118, No. 1, pp. 27-30, 1996.[2]Sathyamurthy, P., Runstadler, P.W., “Numerical and Experimental Evalution of Planar and Staggerred Heat Sinks, Inter Society Conference on Thermal Phenomena, Vol. 5, No. 7,pp. 132-139, 1996.[3]Jonsson H. and Moshfegf B., “Modeling of the Thermal and Hydraulic Performance of Plate fin, Strip Fin, and Pin Fin Heat Sinks – Influence of Flow bypass, Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp.142-149, 2001.[4]Jonsson H., and Palm B., “Thermal and Hydraulic Behavior of Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions, IEEE Transactions on Components and Packaging Technologies, Vol. 23, No. 1, pp. 47-54, 2000.[5]Sara O.N., “Performance Analysis of Rectangular Ducts with Staggered Square Pin Fins, Energy Conversion and Management, Vol. 44, pp. 1787-1803, 2003.[6]Behnia M.,Copeland, D. and Soodphakdee, D., “A Comparison of Heat Sink Geometries for Laminar Forced Convection：Numerical Simulation of Periodically Developed Flow, Int. Society Conference on Thermal Phenomena, IEE, pp.310-315, 1998.[7]Yang J., Soodphakdee D. and Behnia M., “Correlations Based on CFD and Their Applications in Optimization for Staggered and Parallel Plate Fin Heat Sinks, J. Univ. Sci. Technol. Beijing, Vol. 9, pp. 25–30, 2002.[8]Leon O., DeMey G., Dick E. and Vierendeels J., “Comparison between the Standard and Staggered Layout for Cooling Fins in Forced Convection Cooling ASME J. Electron. Packag., Vol. 125, pp. 442–446, 2003.[9]Lawson A., Thrift A., Thole A., Kohli A., “Heat Transfer from Multiple Row Arrays of Low Aspect Ratio Pin Fins, Int. J. Heat and Mass Transfer, Vol. 54, pp. 4099-4109, 2011.[10]Narasimhan S., Majdalani J., “Characterization of Compact Heat Sink Models in Natural Convection, IEEE Transactions on Components and Packaging Technologies, Vol. 25, pp. 78-86, 2002.[11]Zhou F., Catton I., “Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks with Various Pin Cross-Sections, Numerical Heat Transfer, Part A: Applications, Vol. 60, pp.107-128, 2011.[12]Sahiti N., Lemouedda A., Stojkovic D., Durst F., Franz E., “Performance Comparison of Pin Fin In-Duct Flow Arrays with Various Pin Cross-Sections, Applied Thermal Engineering, Vol. 26, pp. 1176-1192, 2006.[13]Yang Y.T., Peng H.S., “Numerical Study of Thermal and Hydraulic Performance of Compound Heat Sink, Numerical Heat Transfer, Part A: Applications, Vol. 55, pp. 432-447, 2009.[14]Leon O. Optimization of heat sinks by computational flow dynamics techniques, Doctoral Thesis, University of Ghent, 2003.[15]Sansoucy E., Oosthuizen P.H., Ahmed G.R., “An Experimental Study of the Enhancement of Air-Cooling Limits for Telecom/Datacom Heat Sink Applications Using an Impinging Air Jet, Journal of Electronic Packaging, Vol. 128, pp.166-171, 2006.[16]Ledezma G. A. and Bejan A., “Optimal Geometric Arrangement of Staggered Vertical Plates in Natural Convection, Journal of Heat Transfer, Vol. 119, pp.700- 708, 1997.[17]Yu X.L., Feng J.M., Feng Q.K., Wang Q.W., “Development of a Plate-Pin Fin Heat Sink and Its Performance Comparisons with a Plate Fin Heat Sink, Applied Thermal Engineering, Vol. 25, pp.173-82, 2005.[18]Zhao Y.H., Chai C.X., Luo Z.M., “Numerical Simulation Study on Heat Transfer Characteristics of Plate-Pin Fin Oil Cooler, Design ＆ Manufacture of Diesel Engine, Vol. 14, pp.13-15, 2005.(in Chinese)[19]Abdel-Rehim Z.S., “Optimization and Thermal Performance Assessment of Pin Fin Heat Sinks, Energy Source, Part A: Utilization, and Environmental Effect, Vol. 31, pp. 51-65, 2008.[20]Chiang K. T., Chang F.P., “Application of Response Surface Methodology in the Parametric Optimization of a Pin-Fin Type Heat Sink, Int. Communication in Heat and Mass Transfer, Vol. 33, pp. 836-845, 2006.[21]Seyf H. R., Layeghi M., “Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert, J. Heat transfer, Vol. 132, paper no. 071401, 2010.[22]Nakayama A., Yang J., Zeng M., Wang Q. W., “Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels, J. Heat transfer, Vol. 132, paper no.051702, 2010.[23]Jeng TM., “A Porous Model for the Square Pin-Fin Heat Sink Situated in a Rectangular Channel with Laminar Side-Bypass Flow, Int. J. Heat and Mass Transfer, Vol. 51, pp. 2214-2226, 2008.[24]Mohsin S., Maqbool A., Khan W. A., “Optimization of Cylindrical Pin-Fin Heat Sinks Using Genetic Algorithms, IEEE Trans. Compon. Packag. Technol., Vol. 32, No.1, pp. 44-52, 2009.[25]Khan W. A., Culham J. R., Yovanovich M. M., “Optimization of Pin Fin Heat Sinks Using Entropy Generation Minimization, IEEE Trans. Compon. Packag. Technol., Vol. 28, No. 2, pp. 247-254, 2005.[26]Launder B.E., Spalding D.B., “The Numerical Computation of Turbulent Flow, Computer Method in Applied Mechanics and Engineering, Vol. 3, pp.269-289, 1974.[27]Yakhot V., Orszag S.A., “Renormalization Group Analysis of Turbulence, Journal of Scientific Computing, Vol. 1, pp.3-51, 1986.[28]Shih T.-H., Liou W.W., Shabbir A., Yang Z., Zhu J., “A New Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation, Computers Fluids, Vol. 24, pp.227-238, 1995.[29]Serag-Eldin M. A., Spalding D. B., “Computation of Three-Dimensional Gas Turbine Combustion Chamber,ASME Journal of Engineering for Power, Vol. 101, pp.327-336, 1979.[30]Jayatilleke C., “The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer, Prog. Heat Mass Transfer, Vol. 1, pp.193-321, 1969.[31]Kim S.-E., Choudhury D., “A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient, Separated and Complex Flow, ASME FED Vol. 217, 1995.[32]Patankar S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.[33]Van Doormaal J. P., Raithby G. D., “Enhancement of the SIMPLE method for Predicting Incompressible Fluid Flow, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.[34]Bagley J.D., “The Behavior of Adaptive System which Employ Genetic and Correlation Algorithm, Dissertation Abstracts International, Vol. 28, 1967.[35]De Jong K.A., “An Analysis of the Behavior of a Class of Genetic Adaptive Systems, PhD Dissertation, University of Michigan, No. 76~9381, 1975.[36]Goldberg D.E., “Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.[37]Davis L.D., “Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.[38]Koza J.R., “Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT Press, 1992.[39]葉怡成, 高等實驗計算法(Advanced Design of Experiments),五南圖書公司, 2009.[40]周明, 孫樹棟, 遺傳算法原理及應用(Genetic Algorithms: theory and applications), 國防工業出版社, 1999.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 應用基因演算法於批次生產排程系統做為電力預估最佳化之研究 2 自來水管網系統設計最佳化之發展與研究 3 利用適應性基因演算法設計最佳模糊控制器 4 裝修工程廢棄物回收站與再利用廠設置最佳化區位評選之研究 5 遺傳演算法與非線性規劃混合模式在地下水復育問題上之應用 6 遺傳演算法於配送點選擇之應用 7 整合Moldflow與基因演算法於射出成型模具冷卻水道位置最佳化 8 以基因演算法與平行運算進行翼型優化 9 應用基因演算法於多層甲板結構物之最佳化設計 10 工具機最大金屬切除率基於工件表面粗糙度之探討 11 動作型電腦遊戲設計因素探討 12 整合基因演算法與熱流分析軟體進行散熱模組最佳化 13 公路平面近似線形最佳化模式 14 以基因區域搜尋演算法設計繞射型濾波元件 15 隨機模擬最佳化之研究

 無相關期刊

 1 相變化材料於可攜式電子零件冷卻之數值模擬 2 改良式柱狀鰭片與渦流產生器對散熱器熱性能增強的研究 3 球面散熱鰭片對自然對流熱傳增益之研究 4 應用晶格波茲曼法模擬奈米流體熱對流問題 5 應用場協同理論於受磁場作用下複雜波形渠道之強制對流熱傳特性分析 6 應用田口法於衝擊冷卻下柱狀鰭片散熱器之最佳化數值研究 7 奈米流體紊流熱傳增強的數值研究 8 微流道散熱座之熱傳分析與流道設計 9 具氣體擴散區之散熱座性能的分析 10 高穩定度微流道散熱器研究 11 非均勻流場內散熱器性能之分析 12 LED微型投影機的散熱設計之模擬與實驗整合研究 13 具傾斜角度LED路燈散熱分析與實驗 14 散熱系統的Showerhead Effect研究 15 應用晶格波茲曼法結合大渦法模擬紊流強制對流熱傳問題

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室