跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 22:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊貴
研究生(外文):Chun-KueiChen
論文名稱:純質/複合燃燒液滴沿流線向之相互作用
論文名稱(外文):Streamwise Interaction of Burning Pure/Compound Drops
指導教授:林大惠林大惠引用關係
指導教授(外文):Ta-Hui Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:104
中文關鍵詞:液滴流線向的交互作用液滴燃燒液滴蒸發微爆複合液滴
外文關鍵詞:Streamwise Drop InteractionBurning DropsDrop EvaporationMicro-explosionCompound Drop
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
在噴霧燃燒的研究中,液滴間距的分佈以及對流效應是很重要的研究參數。先前有許多學者以不同間距的液滴串,研究液滴在蒸發與燃燒過程時的相互影響性,而初始液滴間距(Si)的變化參數大多是2到30之間,並且液滴與環境氣流的相對速度差大多均高於3 m/s以上。然而液滴初始間距(Si)超過30以上,以及液滴與環境氣流的相對速度在〈 3 m/s的條件下,其液滴串在燃燒與蒸發過程中的相互影響性的研究則仍屬少數。因此,本研究以不同的純質或複合液滴串,研究初始液滴間距(Si)在2.5到100的條件下,以自由落下的方式落入一個高溫的含氧環境,液滴在此含氧環境中與環境氣流的相對速度差〈 3 m/s,觀察其液滴火焰變化的過程、火焰寬度變化、液滴蒸發速率與複合液滴微爆…等現象。
研究結果指出,初始液滴間距(Si) 〉 10以上時,純質液滴在引燃的初期,火焰是形成在液滴的前方,隨著液滴落下的速度增加,液滴火焰便會從液滴的前方開始向液滴後方移動,形成一個球形的火焰,最後轉變成尾流火焰。而初始液滴間距(Si) 在2.5與5時,則是可以觀察到液滴串是在一個火焰管內群體蒸發與燃燒。由於液滴與液滴之間有強烈的相互影響性,因此會造成液滴間距的不穩定與液滴碰撞的發生,並且在燃燒過程會有碳灰層的產生。而液滴蒸發速率的變化結果顯示,當Si 〈 30時,液滴的蒸發速率會低於單顆液滴的蒸發速率,但在30 〈 Si 〈 75時的液滴蒸發速率,則是會略高於單顆液滴。液滴的相互影響性大約要Si 〉 75以上才會減少。
複合液滴串的研究結果則顯示,複合液滴串火焰的長度會隨著Si增加而縮短,但是Si = 2.5的火焰長度,則是會比Si = 5短,原因為,Si = 2.5液滴串在燃燒過程中,有很強的相互影響性,並有液滴碰撞黏合的現象,因此火焰會比Si = 5提早熄滅。而Si = 10則是可以觀察到複合液滴發生微爆時的火焰傳播現象。複合液滴的蒸發速率結果顯示,複合液滴的相互影響性約Si 〉 30以上,才會開始減少。

The spatial distribution of drops and the consequential interactions are influential parameters in spray combustion. Most of the available research papers on this subject were about lateral spacing effects or were performed in microgravity. Studies about upstream/downstream convective interaction of burning drops are scarce.
In this study, single-component or compound drop strings of different spacing were observed in a high-temperature oxidizing environment for their flame transition, flame width variation and drop evaporation rate. As the drop fell into the combustion chamber, due to the acceleration of the drop and the deceleration of the gas the drop flame initially appeared below the drop. The flame became a spherical envelope flame, and later moved behind the drop and burned as a wake flame. It was found that a drop string with an initial drop spacing (Si) of 2.5 or 5 was surrounded by a bulk flame tube, exhibiting characteristics of group burning and soot layer. In addition, for the case of Si=2.5, spacing instability and collision merging of the burning drops occurred. For other cases, most of the drops were not surrounded by flame. For the case of Si 〈 30, the drop evaporation rate was lower than that of a single drop. For the case of 30 〈 Si 〈 75, the drop evaporation rate was higher than that of a single drop. The interaction of drops diminished if Si was more than 75.
The results of the experiments on compound drops indicated that in general the flame length increased as the initial drop spacing (Si) decreased. However, for a drop string with an initial spacing about 2.5, the trend reversed due to collision-merging of the drops. Micro-explosion occurred because of nucleation bubble explosion in the water core of the compound drop. The flame spread through micro-explosion occurred for the case of Si = 10, and the effect of spacing on drop evaporation diminished beyond Si = 30.

Contents
Contents…………………………………………………..………………….Ⅰ
List of Tables…………………………………………………..…………….Ⅲ
List of Figures……………………………………………….....…………....Ⅳ
Nomenclature………………………………………………...…...…………Ⅶ
1. Introduction……...………...…………………...………………………….1
1.1 Combustion characteristics of single drop……………………...……1
1.1.1 Single-component fuel……………….……………..……....1
1.1.2 Multi-component miscible fuel………………..…….…..….4
1.1.3 Multi-component immiscible fuel.……………………….....6
1.2 Drops interaction in the burning process.…………………….….....10
1.3 Objectives………………………………………..………….……...19
2. Experiments……..……….………………………………………….……21
2.1 Drop string generation system……………………………….……..21
2.1.1 Drop string generator………..…………………….............21
2.1.2 Drop string severance system…………..…………….…...22
2.1.3 Piezoelectric drop generator…………………….................23
2.2 Combustion chamber……………………...…….…………..….......23
2.3 Experimental methods and steps………………….……………..…25
3. Results and discussion...………………………………….…..…………..26
3.1 Streamwise interaction of burning drop string…….……….………26
3.1.1 Flame streak.........................................................................26
3.1.2 Flame transition…………….………………………..…....28
3.1.3 Vaporization rate of drop….…………………...………..…35
3.2 Combustion characteristics of compound drops……...…………….37
3.2.1 Ignition delay time…………………………………...……38
3.2.2 Vaporization rate of compound drops……………..............39
3.3 Streamwise interaction of burning compound drop string…………42
3.3.1 Flame streak……………………………………………….42
3.3.2 Vaporization rate……….…………………………….……45
3.3.3 Count of compound drop micro-explosion…......................47
3.3.4 Types of micro-explosion of compound drops……………49
4. Conclusions……...……..…………………………………….….……….52
4.1 Streamwise drop interaction in a burning drop string…………..…..52
4.2 Combustion characteristics of compound drops………………........53
4.3 Micro-explosion of compound drops……........................................53
5. References……...…………………………………….………….……….55
Tables and figures……...……………………………………….……………65
List of publications…………….………………………………….....……..103
1.Spalding, D. B., “The burning of liquid fuels, Proc. Combust. Inst., Vol. 4, p. 847, 1953.
2.Godsave, G. A. E., “Studies of the combustion of drops in a fuel spray: the burning of single drops of fuel, Proc. Combust. Inst., Vol. 4, p. 818, 1953.
3.Goldsmith, M., Penner, S. S., “On the burning of single drops of fuel in an oxidizing atmosphere, Jet Propulsion, Vol. 24, p. 245, 1954.
4.Wise, H., Lorell, J., Wood, B. J., “The effects of chemical and physical parameters on the burning rates of a liquid droplet, Proc. Combust. Inst., Vol. 5, p. 132, 1955.
5.Williams, A., “Combustion of droplets of liquid fuels: a review, Combust. Flame, Vol. 21, p. 1, 1973
6.Faeth, G. M., “Current status of droplet and liquid combustion, Prog. Energy Combust. Sci., Vol. 3, p.191, 1977.
7.Law, C. K, “Recent advances in droplet vaporization and combustion, Prog. Energy Combust. Sci., Vol. 8, p.171, 1982.
8.Faeth, G. M., “Evaporation and combustion of spray, Prog. Energy Combust. Sci., Vol. 9, p.1, 1983.
9.Sirignano, W. A., “Fuel droplet vaporization and spray combustion theory, Prog. Energy Combust. Sci., Vol. 9, p.291, 1983.
10.Chiu, H. H., “Advances and challenges in droplet and spray combustion. I. toward a unified theory of droplet aerothermochemistry, Prog. Energy Combust. Sci., Vol. 16, p.381, 2000.
11.Umemura, A., “Interactive droplet vaporization and combustion: approach from asymptotics, Prog. Energy Combust. Sci., Vol. 20, p.325, 1994.
12.Williams, F. A., “Combustion theory, Benjamin-Cummings, New York, 1985.
13.Ross, H. D., “Microgravity combustion: fire in free fall, Academic Press, London, 2001.
14.Kuo, K. K., “Principles of combustion, John Wiley & Sons, Hoboken, New Jersey, 2005.
15.Warnatz, J., Maas, U., Dibble, R. W., “Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, Springer Berlin Heidelberg, New York, 2006.
16.Law, C. K., “Combustion physics Cambridge University, New York, 2006.
17.Glassman, I., Yetter, R. A., “Combustion, Academic Press, New York, 2008.
18.Sirignano, W. A., “Fluid dynamics and transport of droplets and sprays, Cambridge University, New York, 2010.
19.Hubbard, G. L., Denny, V. E., Mills, A. F., “Droplet evaporation: effects of transients and variable properties, Int. J. Heat Mass Transfer Vol. 18, p.1003, 1975.
20.Prakash, S., Sirignano, W. A., “Liquid fuel drop heating with internal circulation, Intl. J. Heat Mass transfer, Vol. 21, p.885, 1978.
21.Prakash, S., Sirignano, W. A., “Theory of convective droplet vaporization with unsteady heat transfer in the circulating liquid phase, Intl. J. Heat Mass transfer, Vol. 23, p.253, 1980.
22.Sirignano, W. A., “Fuel droplet vaporization and spray combustion theory, Prog. Energy Combust. Sci., Vol. 9, p.291, 1983.
23.Faeth G. M., Dominicis, D. P., Tulpinsky, J. F., Olson, D. R., “Supercritical bipropellant droplet combustion, Proc. Combust. Inst., Vol. 12, p.9, 1969.
24.Polymeropoulos, C. E., Peskin, R. L., “Combustion of fuel vapor in a Hot, stagnant oxidizing environment, Combust. Sci. Tech., Vol. 5, p. 165, 1972.
25.Sato, J., Tsue, M., Niwa, M., Kono, M., “Effects of natural convection on high-pressure droplet combustion, Combust. Flame, Vol. 82, p. 142, 1990.
26.Hsieh, K. C., Shuen, J. S., Yang, V., “Droplet vaporization in high-pressure environments I: near critical conditions, Combust. Sci. Tech., Vol. 76, p. 111, 1991.
27.Curtis, E. W., Farrel, P. V., “A numerical study of high-pressure droplet vaporization, Combust. Flame, Vol. 90, p. 85, 1992.
28.Delpanque, J. P., Sirignano, W. A., “Numerical study of the transient vaporization of an oxygen droplet at sub- and super-critical conditions, Intl. J. Heat mass Transfer, Vol. 36, p. 303, 1993.
29.Jiang, T. L., Chiang, W. T., “Effects of multiple droplet interaction on droplet vaporization in subcritical and supercritical pressure environments, Combust. Flame, Vol. 97, p.17, 1994.
30.Jiang, T. L., Chiang, W. T., “Vaporization of a dense spherical cloud of droplets at subcritical and supercritical conditions, Combust. Flame, Vol. 99, p.355, 1994.
31.Daou, J., Haldenwang, P., Nicoli, C., “Supercritical burning of liquid oxygen (LOX) droplet with detailed chemistry, Combust. Flame, Vol. 101, p.153, 1995.
32.Yang, V. “Modeling of supercritical vaporization, mixing, and combustion processes in liquid fueled propulsion system, Proc. Combust. Inst., Vol. 28, p.925, 2000.
33.Dietrick, D. L., Haggard, J. B., Dryer, F. L., Nayagam, V., Shaw, B. D., Williams, F. A., “Droplet combustion experiments in spacelab, Proc. Combust. Inst., Vol. 26, p.1201, 1996.
34.Jackson, G. S., Avedisian, C. T., “The effect of initial droplet diameter on the burning rate of sooting fuels, Proc. R. Soc. Lond. A, Vol. 446, p.255, 1994.
35.Okai, K. Tsue, M., Kono, M., Sato, J., Dietrich, D. L., Williams, F. A., “An experimental study of microgravity combustion of a droplet near a wall, Combust. Flame, Vol. 133, p.169, 2003.
36.Bae, J. H., Avedisian, C. T., “High-pressure combustion of submillimeter-sized nonane droplets in a low convection environment, Combust. Flame, Vol. 145, p. 607, 2006.
37.Randolph, A. L., Makino, A., Law, C. K., “Liquid-phase diffusional resistance in multicomponent droplet gasification, Proc. Combust. Inst., Vol. 21 p. 601, 1988.
38.Mawid, M., Aggarwal, S. K., “Analysis of transient combustion of a multicomponent liquid fuel droplet, Combust. Flame, Vol. 84, p. 197, 1991.
39.Megaridis, C.M., Sirignano, W.A., “Numerical modeling of a vaporizing multicomponent droplet, Proc. Combust. Inst., Vol. 23, p. 1413, 1991.
40.Segawa, D., Kadota, T., Kohama, R., Enomoto, H., “Ignition of binary mixture droplets by a propagating laminar flame, Proc. Combust. Inst., Vol. 28, p. 961, 2000.
41.Shaw, B.D., Dwyer, H.A., Wei, J.B., “Studies on Combustion of Single and Double Streams of Methanol and Methanol/Dodecanol Droplets, Combust. Sci. Tech., Vol. 174, p. 29, 2002.
42.Stry, W. J., Felske, J. D., Ashgriz, N., “Droplet combustion of chlorinated benzenes, alkanes, and their mixtures in a dry atmosphere, Environ Eng Sci., Vol. 20, p. 125, 2003.
43.Bae, J. H., Avedisian, C. T. “Experimental study of the combustion dynamics of jet fuel droplets with additives in the absence of convection, Combust. Flame, Vol. 137, p. 148, 2004.
44.Segwa, D. Yamasaki, H. Kadota, T. Tanaka, H. Enomoto, H. Tsue, M., “Water-coalescence in an oil-in-water emulsion droplet burning under microgravity, Proc. Combust. Inst. Vol. 28, p. 985, 2000.
45.Kadota, T., Yamasaki, H., “Recent advances in the combustion of water fuel emulsion, Prog. Energy Combust. Sci., Vol. 28, p. 385, 2002.
46.Kadota, T., Tanaka, H., Segawa, D., Nakaya, S., Yamasaki, H., “Microexplosion of an emulsion droplet during leidenfrost burning, Proc. Combust. Inst., Vol. 31, p. 2125, 2007.
47.Wang, C. H., Lin, C. Z., Hung, W. G., Huang, W. C., Law, C. K., “On the burning characteristics of collision-generated water/hexadecane droplets, Combust. Sci. Tech., Vol. 176, p. 71, 2004.
48.Wang, C. H. Pan, K. L. Huang, W. C. Wen, H. C. Yang, J. Y. Law, C. K., “Effects of fuel properties on the burning characteristics of collision-merged alkane/water droplets, Exp. Therm. Fluid Sci., Vol. 32, p. 1049, 2008.
49.Avedisian, C. T., Andres, R. P., “Bubble nucleation in superheated liquid-liquid emulsions, J. Colloid Interface Sci., Vol. 64, p. 438, 1978.
50.Wang, C. H. Liu, X. Q. Law, C. K., “Combustion and micro-explosion of freely falling multicomponent droplets, Combust. Flame, Vol. 56, p. 175, 1984.
51.Lasheas, J. C. Yap, L.T. Dryer, F. L., “Effect of the ambient pressure on the explosive burning of emulsified and multicomponent fuel droplets, Proc. Combust. Inst. Vol. 20, p. 1761, 1985.
52.Tsue, M. Kadota, T. Segawa, D. Yamasaki, H., “Statistical analysis of onset of micro-explosion for an emulsion droplet, Proc. Combust. Inst., Vol. 26, p. 1629, 1996.
53.Tsue, M. Yamasaki, H. Kadota, T. Segawa, D. Kono, M., “Effect of gravity on onset of microexplosion for an oil-in-water emulsion droplet, Proc. Combust. Inst. Vol. 27, p. 2587, 1998.
54.Hsieh, W. D., Lin, S. Y., Chen, R. H., Lin, T. H., “Burning behavior of gas-in-oil compound drops, Combust. Sci. Tech., Vol. 183, p. 51, 2011.
55.Chiu, S. L., Lin, T. H., “Experiment on the dynamics of a compound drop impinging on a hot surface, Phys. Fluids., Vol. 17, p. 122103, 2005.
56.Chen, R. H., Chiu, S. L., Lin, T. H., “Resident time of a compound drop impinging on a hot surface, Appl. Therm. Eng., Vol. 27, p. 2079, 2007.
57.Kikuchi, M., Wakashima, Y., Yoda, S., Mikami, M., Numerical study on flame spread of an n-decane droplet array in different temperature environment under microgravity, Proc. Combust. Inst., Vol. 30 p.2001, 2005.
58.Mikami, M., Oyagi, H., Kojima, N., Wakashima, Y., Kikuchi, M., Yoda, S., “Microgravity experiments on flame spread along fuel-droplet arrays at high temperatures, Combust. Flame, Vol. 146, p. 391, 2006.
59.Nomura, H., Takahashi, M., Ujiie, Y., Hara, H., “Observation of droplet motion during flame spread on three-fuel-droplet array with a pendulum suspender, Proc. Combust. Inst., Vol. 30, p. 1991, 2005.
60.Nomura, H., Suganuma, Y., Setani, A., “Microgravity experiments on droplet motion during flame spreading along three-fuel-droplet array, Proc. Combust. Inst., Vol. 32, p. 2163, 2009.
61.Umemura, A., Takamori, S., “Percolation theory for flame propagation in non-or less-volatile fuel spray: a conceptual analysis to group combustion excitation mechanism, Combust. Flame, Vol. 141, p. 336, 2005.
62.Chiu, H. H., Liu, T. M., “Group combustion of liquid droplets, Combust. Sci. Tech., Vol. 17, p.127, 1977.
63.Miyasaka, K., Law, C.K., “Combustion of strongly-interacting linear droplet arrays, Proc. Combust. Inst., Vol. 18, p.283, 1981.
64.Xiong, T.Y., Law, C.K., Miyasaka, K., “Interactive vaporization and combustion of binary droplet systems, Proc. Combust. Inst., Vol. 20, p. 1781, 1985.
65.Sangiovanni, J. J., Kesten, A. S., “Effect of droplet interaction on ignition in monodispersed droplet streams, Proc. Combust. Inst., Vol.16, p. 577, 1977.
66.Sangiovanni J. J., Labowsky, M., “Burning times of linear fuel droplet arrays a comparison of experiment and theory, Combust. Flame. Vol. 47, p. 15-30, 1982.
67.Umemura, A., “A theoretical study on the unsteady, interactive combustion of a linear fuel droplet stream, Proc. Combust. Inst., Vol. 23, p.1445, 1990.
68.Queiroz, M., “The effect of lateral spacing on the combustion dynamics and thermal structure of an array of burning droplet streams, Combust. Sci. Tech., Vol. 72, p. 1, 1990.
69.Queiroz, M., Yao, S.C., “Experimental exploration of the thermal structure of an array of burning droplet streams Combust. Flame, Vol. 82, p. 346, 1990.
70.Zhu, J. Y., Dunn-Rankin, D., “Temperature characteristics of a combusting droplet stream, Proc. Combust. Inst., Vol. 24, p. 1473, 1992.
71.Silvermanand, M. A., Dunn–Rankin, D., “Experimental investigation of a rectilinear droplet stream flame, Combust. Sci. Tech., Vol. 100, p. 57, 1994.
72.Connon, C. S., Dimalanta, R., Cho, C., Dunn-Rankin, M, D., “LIF measurements of fuel vapor in an acetone droplet stream, Combust. Sci. Tech., Vol. 129, p.197, 1997.
73.Virepinte, J.F., Biscos, Y., Lavergen, G., Magre, P., Collin, G., “A rectilinear droplet stream in combustion: droplet and gas phase properties, Combust. Sci. Tech., Vol. 150, p.143, 2000.
74.Roth, N., Karl, A., Anders, K., Frohn, A., “Flame propagation in planar droplet arrays and interaction phenomena between neighboring droplet streams, Combust. Inst. Vol. 26, p. 1697, 1996.
75.Lavieille, P., Lemoine, F., Lebouché, M., “Investigation on temperature of evaporating droplet in linear stream using two-color laser induced fluorescence, Combust. Sci. Tech., Vol. 174, p.117, 2002.
76.Castanet, G., Lebouche, M., Lemoine, F., “Heat and mass transfer of combusting monodisperse droplets in a linear stream, Int. J. Heat Mass Transfer, Vol. 48, p. 3261, 2005.
77.Depredurand, V., Castanet , G., Lemoine, F., “Heat and mass transfer in evaporating droplets in interaction: Influence of the fuel, Int. J. Heat Mass Transfer, Vol. 53, p. 3495, 2010.
78.Castanet, G., Frackowiak, B., Tropea, C., Lemoine, F., “Heat convection within evaporating droplets in strong aerodynamic interactions, Int. J. Heat Mass Transfer, Vol. 54, p. 3267, 2011.
79.Cho, C. P., Kim, H. Y., Yoon, S. S., “Interaction of the burning spherical droplets in oxygen-enriched turbulent environment, Combust. Flame, Vol. 156, p. 14, 2009.
80.Lee, D., Kim, H. Y., Yoon, S. S., Cho, C. P., “Group combustion of staggeringly arranged heptane droplets at various Reynolds numbers, oxygen mole-fractions, and separation distances, Fuel, Vol. 89, p. 1447, 2010.
81.Gao, T. C., “Droplets-collision analysis and droplet-generator development, Unpublished Master Dissertation, Department of Mechanical Engineering National Cheng Kung University, 1999.
82.Frohn, A., Roth, N., “Dynamics of droplets, Springer Berlin Heidelberg, New York, 2000.
83.Ashgriz, N. “Handbook of atomization and sprays theory and applications, Springer Dordrecht Heidelberg, New York, 2011.
84.Takei, M. Tsukamoto, T. Niioka, T., “Ignition of blended-fuel droplet in high-temperature atmosphere, Combust. Flame, Vol. 93, p. 149, 1993.
85.Turns, S. R., “An introduction to combustion, concepts and applications, McGraw-Hill, New York, 2011.
86.Law, C. K., Williams, F. A., “Kinetics and convection in the combustion of alkane droplets, Combust. Flame, Vol. 19, p. 393, 1972.
87.Sazhin, S. S., “Advanced models of fuel droplet heating and evaporation, Prog. Energy Combust. Sci., Vol. 32, p. 162, 2006.
88.Yaws, C. L., Handbook of transport property data: viscosity, thermal conductivity, and diffusion coefficients of liquids and gases, Gulf Publishing Company, Houston, 1995.
89.Ranz, W. E., Marshall, W. R., Jr., “Evaporation from drops, Chem. Eng. Prog, Vol. 48, p. 141, 173, 1952.
90.Mikami, M., Yagi, T., Kojima, N., “Occurrence probability of micro-explosion in droplet combustion of miscible binary fuels, Proc. Combust. Inst. Vol. 27, p. 1933, 1998.
91.Mikami, M., Kojima, N., “An experimental and modeling study on stochastic aspects of micro-explosion of binary-fuel droplets, Proc. Combust. Inst. Vol. 29, p. 551, 2002.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top