跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/24 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊國鵬
研究生(外文):Kuo-PengChuang
論文名稱:二氧化鈦與其摻雜二氧化矽之薄膜的製備、特性與應用研究
論文名稱(外文):A study on fabrication, characterization and application of TiO2 and TiO2-SiO2 thin films
指導教授:鍾震桂
指導教授(外文):Chen-Kuei Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:120
中文關鍵詞:氧化鈦薄膜溶膠凝膠法雷射退火光激發光二氧化矽
外文關鍵詞:titanium dioxide thin filmsol gel processlaser annealingphotoluminescencesilicon dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用溶膠凝膠法製備二氧化鈦(TiO2)與二氧化鈦-二氧化矽(TiO2-SiO2)薄膜,經由改變溶液比例參數配合旋轉塗佈法將溶液塗佈在矽基板上形成薄膜,接著使用二氧化碳雷射在0.5 W、1.0 W和1.5 W不同雷射功率下進行退火改質,取代並與爐溫退火500 ℃和800 ℃進行比較。
薄膜性質分析方面,分別使用低掠角X光繞射儀(Grazing Incidence X-ray Diffraction, GIXRD)、場發射式掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM)、能量散佈光譜儀(Energy Dispersive Spectroscopy, EDS)、傅立葉轉換紅外線分光光譜儀(Fourier Transform Infrared Spectroscopy, FTIR)和光激發光譜儀(Photoluminescence Spectroscopy, PL)對初鍍膜與雷射退火改質後的TiO2與TiO2-SiO2薄膜的顯微結構、表面形貌、原子比例含量、鍵結含量和發光行為進行研究分析,並做光催化與光生親疏水性的應用端實驗來與過往的文獻交互印證。
所有的初鍍膜經由GIXRD的分析證實在未退火之前薄膜都屬於非晶相的結構。而經過爐溫退火500 ℃和800 ℃後分別形成Anatase與Rutile單晶相結構;反之雷射退火過後,0.5 W功率下所有薄膜皆屬於非晶相,在1.0 W功率只有異丙氧鈦莫爾濃度加倍和摻雜SiO2的組別呈現Anatase與Rutile混合結晶相,功率在1.5 W後都呈現Rutile相結構。
所有的初鍍膜在PL光譜中的550 nm位置皆顯示出明顯的波峰訊號,經過爐溫退火的氧化鈦薄膜皆只有在近紫外光區域本身材料的結構晶格發光;而雷射退火所產生薄膜,明顯與爐溫退火不同,發光區域從近紫外光驅愈擴展至可見光的範圍,在混合相中,除了Anatase與Rutile本身的晶格發光外,還有形成Rutile (1 1 0)後在558 nm位置發現由Rutile相氧缺陷所造成的深層發光,和611 nm位置是由電子躍遷至缺陷或表面能態的階級位置放光所致,隨著瓦數的增加因為相轉變產生晶格扭曲導致紅移現象的發生,而SiO2的摻雜改變本身晶體結構,所以在同瓦數時,波峰訊號有藍移的情形。
應用端方面,實驗指出較具結晶性的薄膜其光催化的效果為最好,但是隨著瓦數的增加,則是跟薄膜反應的面積有關;而光生親水性方面,TiO2溶液莫爾濃度的改變對接觸角影響有限,但是摻雜SiO2後,經由UV光照射都比原TiO2薄膜的角度來的低,其與氧的含量與表面酸度有很大的關係。

Titanium oxide (TiOx) and titanium-silicon oxide (TiOx-SiO1-x) thin films were fabricated by sol gel process with various solution ratios and deposited on the Si (1 0 0) wafers by spin coating. Instead and compare of conventional furnace annealing at 500 and 800 ℃, the CO2 laser annealing was performed using with three different powers : 0.5 W, 1.0 W and 1.5 W in atmosphere.
The thin films properties like microstructure, surface morphology, element atom ratios, bonding form and luminescence behaviors were analyzed by grazing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy (PL), respectively. The photocatalytic and photo-induced hydrophility were experinment to confirm the past researches.
All of as-deposited TiOx and TiOx-SiO1-x thin films were amorphous phase from GIXRD analysis. The single phase of anatase and rutile were formed after furnace annealing at 500 and 800 ℃. All of thin films were also amorphous phase in laser annealed at power of 0.5 W. Only double the molar ratio of procedure and dop with SiO1-x had mix phase of anatase and rutile at power of 1.0 W, other samples and laser annealed at power of 1.5 W were only rutile crystal structure.
All of the as-deposited films had distinct peak at 550 nm in PL spectra, and the TiOx thin films only had the lattice emitted itself in the near ultraviolet range after furnace annealing. It is obviously different in laser annealed, because the luminescence zone was expanded from ultraviolet range to the visible range after laser annealing. In mix crystal phase, except for the anatase and rutile lattice emission itself, also found a peak at 588 nm which was attributed to the deep-level emissions like oxygen vacancies of rutile phase and another peak at 611 nm which was due to the electron transitions related to defects or surface state energy levels emissions. The red-shift of PL peak induced with increasing power was attributed to the phase transformation with distortion of band gap junction on crystallite structure, and blue-shift was due to the SiO1-x dopped to change the lattice structure.
In aplications, the best photocatalytic behavior is the thin film which has the best crystal structure. But when the power increased, the photocatalytic was related the reactive surface area. In photo-induced hydrophility, there was no influence of contact angle with changing the molar ratios in TiOx solution. But when SiO1-x dopped, the contact angles were lower than the pure TiOx thin films after UV irradiation, it is related to the oxygen content and surface acid.

摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 本文架構 6
第二章 文獻回顧與理論基礎 7
2-1 二氧化鈦材料簡介與研究發展 7
2-1-1 二氧化鈦的基本性質 7
2-1-2 二氧化鈦研究發展 – 光催化 11
2-1-3 二氧化鈦研究發展 – 超親水性 14
2-1-4 二氧化鈦研究發展 – 摻雜雜質 16
2-2 二氧化鈦薄膜製程文獻回顧 18
2-2-1 物理氣相沉積(PVD) 18
2-2-2 化學氣相沉積(CVD) 19
2-2-3 液相沉積(LPD) 19
2-2-4 熔膠凝膠法(Sol-gel process) 20
2-3 二氧化碳雷射退火文獻回顧 23
2-3-1 二氧化碳雷射特性 23
2-3-2 二氧化碳雷射退火之應用 25
第三章 實驗方法與步驟 26
3-1 反應基本原理 26
3-1-1 二氧化鈦溶液 (TiO2 solution) 26
3-1-2 二氧化矽溶液 (SiO2 solution) 27
3-1-3 二氧化鈦-二氧化矽系統 (TiO2-SiO2 system) 28
3-1-4 亞甲基藍降解實驗原理 29
3-2 實驗流程 30
3-3 實驗材料 37
3-4 實驗儀器與參數 38
3-4-1 二氧化碳雷射光刻機(CO2 laser system) 38
3-4-2 旋轉塗佈機(Spin Coater) 40
3-4-3 低掠角X光繞射儀(Glancing Incident Angle X-Ray Diffraction, GIXRD) 41
3-4-4 場發射式掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FESEM) 43
3-4-5 能量散佈光譜儀(Energy Dispersive Spectroscopy, EDS) 45
3-4-6 傅立葉轉換紅外線分光光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 46
3-4-7 光激發光譜儀(Photoluminescence Spectroscopy, PL) 48
3-4-8 微型光譜分析系統(Micro Spectrometer System) 49
3-4-9 接觸角量測儀(Contact Angle Meter) 51
3-4-10 簡易型抽屜式UV機 52
3-4-11 程式控制高溫爐 54
第四章 結果與討論 55
4-1 初鍍膜之TiO2與TiO2-SiO2薄膜性質 55
4-1-1 GIXRD顯微結構分析 55
4-1-2 SEM表面形貌 57
4-1-3 EDS化學成分分析 61
4-1-4 FTIR 紅外線光譜鍵結分析 63
4-1-5 PL 光激發螢光性質 67
4-2 雷射退火改質後TiO2與TiO2-SiO2薄膜性質 70
4-2-1 GIXRD顯微結構的分析 70
4-2-2 EDS化學成份分析 79
4-2-3 FTIR紅外線光譜鍵結分析 81
4-2-4 PL光激發螢光性質 86
4-3 光催化與光生親水性的應用 96
4-3-1 吸收光譜分析 96
4-3-2 光催化降解率 98
4-3-3 光生親水性 104
第五章 結論與未來展望 107
5-1 結論 107
5-2 未來展望 110
5-3 本文貢獻 112
參考文獻 113

1.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293, pp. 269 (2001).
2.M.I. Litter, “Heterogeneous photocatalysis Transition metal ions in photocatalytic systems, Applied Catalysis B 23, pp. 89-114 (1999).
3.H. Kishimoto and K. Takahama, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD), Journal of Materials Chemistry 8, pp. 2019–2024 (1998).
4.H. Yu and S.C. Lee, “Photocatalytic activity of dispersed TiO2 particles deposited on glass fibers, Journal of Molecular Catalysis A: Chemical 246, pp. 206–211 (2006).
5.P. Zeman and S. Takabayashi, “Nano-scaled photocatalytic TiO2 thin films prepared by magnetron Sputtering, Thin Solid Films 433, pp. 57–62 (2003).
6.V. Rico, P. Romero and J.L. Hueso, “Wetting angles and photocatalytic activities of illuminated TiO2 thin films, Catalysis Today 143, pp. 347–354 (2009).
7.D. Byun and Y. Jin, “Photocatalytic TiO2 deposition by chemical vapor deposition, Journal of Hazardous Materials B 73, pp. 199–206 (2000).
8.L. Sun and P. Hou, “Spectroscopic ellipsometry study on e-beam deposited titanium dioxide films, Thin Solid Films 455-456, pp. 525-529 (2004).
9.S. Boukrouh, R. Bensaha, S. Bourgeois, E. Finot and M.C.M.D. Lucas, “Reactive direct current magnetron sputtered TiO2 thin films with amorphous to crystalline structures, Thin Solid Films 516, pp. 6353-6358 (2008).
10.A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor, Nature 238, pp. 37-38 (1972).
11.R. Wang, K. Hashimoto and A. Fujoshima, “Light-induced amphiphilic surfaces, Nature 388, pp. 431-432 (1997).
12.B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, pp. 737 (1991).
13.L. Zhao, M. Han and J. Lian, “Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition, Thin Solid Films 516, pp. 3394-3398 (2008).
14.H. Zhang, K. Tan, H. Zheng, Y. Gu and W.F. Zhang, “Preparation, characterization and photocatalytic activity of TiO2 codoped with yttrium and nitrogen, Materials Chemistry and Physics 125, pp. 156–160 (2011).
15.J.M. Herrmann, H. Tahiri, Y.A. Ichou, G. Lassaletta, A.R.G. Elipe and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz, Applied Catalysis B: Environmental 13, pp. 219-228 (1997).
16.G. Marcì, V. Augugliaro, María J. L. Muñoz, C. Martín, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, and A.M. Venezia, “Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 Systems. 1. Surface and Bulk Characterization, Journal of Physical Chemistry B 105, pp. 1026-1032 (2001).
17.D.L. Liao, C.A. Badour and B.Q. Liao, “Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange, Journal of Photochemistry and Photobiology A: Chemistry 194, pp. 11–19 (2008).
18.C.H. Kwon, J.H. Kim, I.S. Jung, H. Shin and K.H. Yoon, “Preparation and characterization of TiO2-SiO2 nano-composite thin films, Ceramics International 29, pp. 851–856 (2003).
19.Z.Q. Zeng, X.Y. Xiao, Z.L. Gui and L.T. Li, “Al2O3-SiO2-TiO2 composite ceramic membranes from sol-gel processing, Materials Letters 35, pp. 67–71 (1998).
20.P. Kofstad, “Nanostoichiometry, diffusion, and electrical conductivity in binary metal oxides, John Wiley & Sons New York (1972).
21.U. Diebold, “The surface science of titanium dioxide, Surface Science Reports 48, pp. 53-229 (2003).
22.L. Kavan, M. Graltzel, S.E. Gilbert, C. Klemenz and H.J. Scheel, “Electrochemical and photoeletrochemical investigation of single-crystal anatase, Journal of American Chemical Society 118, pp. 6716-6723 (1996).
23.D.R. Coronado and G.R. Gattorno, “Phae-pure TiO2 nanoparticles:anatase, brookite and rutile, Nanotechnology 19, pp.10 (2008).
24.M. Grätzel, “Heterogenous photochemical electron transfer, CRC Press (1989).
25.A.J. Bard, “Photoelectrochemistry, Science 207, pp. 139 (1980).
26.M. Kitano, M. Matsuoka, M. Ueshima and M. Anpo, “Recent developments in titanium oxide-based photocatalysts, Applied Catalysis A:General 325, pp. 1-14 (2007).
27.O. Legrini, E. Oliveros and A.M. Braun, “Photochemical processes for water treatment, Chemical Reviews 93, pp. 671-698 (1993).
28.A. Mills and S.L. Hunte, “An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A:Chemistry 108, pp. 1-35 (1997).
29.N.S. Allen, M. Edge, J. Verran, J. Stratton, J. Maltby and C. Bygott, “Photocatalytic titania based surfaces:Environmental benefits, Polymer Degradation and Stability 93, pp. 1632-1646 (2008).
30.H.M. Coleman, C.P. Marquis, J.A. Scott, S.S. Chin and R. Amal, “Bactericidal effects of titanium dioxide , Chemical Engineering Journal 113, pp. 55-63 (2005).
31.T. Young, “An essay on the cohesion of fluids, Philosophical Transactions of the Royal Society of London 95, pp. 65-87 (1805).
32.T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima and K. Hashimoto, “Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films 351, pp. 260-263 (1999).
33.G.S. Vicente, A. Morales and M.T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon, Thin Solid Films 391, pp. 133-137 (2001).
34.Z.M. Qi, K. Itoh, M. Murabayash and C.R. Lavers, “Characterization and application of a channel-planar composite waveguide, Optical Letters 25, pp. 1427-1429 (2000).
35.K. Zakrzewska, “Gas sensing mechanism of TiO2-based thin films, Vacuum 74, pp. 335-338 (2004).
36.J.M. Herrmann, H. Tahiri, Y.A. Ichou, G. Lassaletta, A.R.G. Elipe and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz, Applied Catalysis B:Environmental 13, pp. 219-228 (1997).
37.M. Houmard, D. Riassetto, F. Roussel, A. Bourgeois, G. Berthomé, J.C. Joud and M. Langlet, “Enhanced persistence of nature super-hydrophilicity in TiO2-SiO2 composite thin films deposited via a sol-gel route, Surface Science 602, pp. 3364-3374 (2008).
38.F.U. Xianzhi, A.C. Louis, Y. Qing and A.A. Marc, “Enhanced photocatalytic performance of titanium-based binary metal oxide:TiO2/SiO2 and TiO2/ZrO2, Environmental Science & Technology 30, pp. 647-653 (1996).
39.P. Löbl, M. Huppertz and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation, Thin Solid Films 251, pp. 72-79 (1994).
40.H. Nagayama, H. Honda and H. Kawahara, “A new process for silica coating, Journal of Electrochemical Society:Solid-State Science and Technology 135, pp. 2013-2016 (1988).
41.J.J. Ebelmen, Ann. 57, pp.331 (1846).
42.W. Geffcken and E. Berger, German Patent 736, pp. 411 (1939).
43.K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai and Y. Iguchi, “Microstructure and crystallization behaviour of TiO2 Precursor by the sol-gel method using metal alkoxide, Journal of Materials Science 29, pp. 1617-1622 (1984).
44.B.E. Yoldas, “Hydrolysis of Titanium Alkoxide and Effects of Hydrolytic Polycondensation Parameters, Journal of Materials Science 21, pp. 1087-1092 (1986).
45.F. Cot, A. Larbot, G. Nabias and L. Cot, “Preparation and Characterization of Colloidal Solution Derived Crystallized Titania Powder’’, Journal of the European Ceramic Society 18, pp. 2175-2181 (1998).
46.丁勝懋, “雷射工程導論, 中央圖書出版社 民國82年
47.林三寶, “雷射原理與應用, 全華科技圖書 民國80年
48.高堅志, “實用雷射技術, 文笙書局 民國81年
49.馬英俊, “雷射基本原理及應用, 徐氏基金會 民國80年
50.G. Chryssolouris, “Laser Machining Theory and Practice, pp. 20-31 (1990).
51.Y. Matsui, M. Okuyama, N. Fujita and Y. Hamakawa, “Laser annealing to produce ferroelectric-phase PbTiO3 thin films, Journal of Applied Physics 52, pp. 5107-5111 (1981).
52.P. Heng and K.S. Hwan, “Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics, Applied Physics Letters 94, 071117 (2009).
53.J.K. Walters, J.S. Rigden, P.J. Dirken, M.E. Smith, W.S. Howells and R.J. Newport, “An atomic-scale study of the role of titanium in TiO2:SiO2 sol-gel materials, Chemical Physics Letters 264, pp. 539-544 (1997).
54.B. Liu and X. Zhao. “The structural and photoluminescence studies related to the surface of the TiO2 sol prepared by wet chemical method, Materials Science and Engineering B 134, pp. 27-31 (2006).
55.A. Eshaghi, A. Dashti, A. Eshaghi and R. Mzaffarinia, “Photo-induced superhydrophilicity of nanocomposite TiO2-SiO2 thin film, Material Science Poland 29, pp. 22-28 (2011).
56.E. Haro-Poniatowski, R. Rodrguez-Talavera, M. de la Cruz Heredia, O. Cano-Corona and R. Arroyo-Murillo, “Crystallization of nanosized titania particle prepared by the sol- gel process, Journal of Materials Reasearch 9, pp. 2101-2108 (1994).
57.J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo and F. Honggang, “The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity, Journal of Physics and Chemistry of Solids 64, pp. 615-623 (2003).
58.S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. DiValentin and G. Pacchioni, “Origin of photoactivity of nitrogen-doped titanium dioxide under visible light, Journal of American Chemical Society 128, pp. 15666–15671 (2006).
59.M.A. Henderson, W.S. Epling, C.H.F. Peden and C.L. Perkins, “Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(1 1 0), Journal of Physical Chemistry B 107, pp. 534–545 (2003).
60.Y. Zhao, C. Li and X. Liu, “Synthesis and optical properties of TiO2 nanoparticles, Materials Letters 61, pp. 79–83 (2007).
61.N.I. Surovtseva, A.M. Eremenko, N.P. Smirnova, V.A. Pokrovskii, T.V. Fesenko and G.N. Starukh, “The effect of nanosized titamia-silica film composition on the photostability of adsorbed methylene blue dye, Theoretical and Experimental Chemistry 43, pp. 235-240 (2007).
62.T. Okumura, Y. Kinoshita, H. Uchiyama and H. Imai, “Photoluminescence of nitrogen-doped anatase, Materials Chemistry and Physics 111, pp. 486-490 (2008).
63.L.Q. Jing, X.J. Sun and B.F. Xin, “The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity, Journal of Solid State Chemistry 177, pp. 3375-3382 (2004).
64.I. Truijen, M.K.V. Bael, H.V.D. Rul, J.D. Haen and J. Mullems, “Preparation of nanocrystalline titania films with didderent porosity by water-based chemical solution deposition, Journal of Sol-Gel Technology 43, pp. 291-297 (2007).
65.M. Houmard, D. Riassetto, F. Roussel, A. Bourgeois, G. Berthomé, J.C. Joud and M. Langlet, “Morphology and natural wettability properties of sol-gel derived TiO2-SiO2 composite thin films, Applied Surface Science 254, pp. 1405-1414 (2007).
66.A. Eshaghi, A. Dashti, A. Eshaghi and R. Mozaffarinia, “Photo-induced superhydrophilicity of nanocomposite TiO2-SiO2 film, Materials Science-Poland 29, pp. 22-28 (2011).

電子全文 電子全文(網際網路公開日期:20220711)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊