跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 15:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳名薪
研究生(外文):Ming-HsinChen
論文名稱:發展機器人導航方法及群體操控技術與其在智慧生活之應用
論文名稱(外文):Development of Navigation Schemes and Group Autonomous Manipulation for Mobile Robots and Their Applications in Intelligent Living Technology
指導教授:陳國聲
指導教授(外文):Kuo-Sheng Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:230
中文關鍵詞:室內定位導航群體操控自主型機器人人機介面智慧生活
外文關鍵詞:indoor localizationnavigationautonomously guided mobile robotsgroup manipulationhuman-machine interfacesmart living
相關次數:
  • 被引用被引用:3
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
智慧型機器人因現代科技日益精進而開始被廣泛使用,因此在許多領域都可以發現其蹤影。然而,為了擴展機器人的用途,人們逐漸將心力轉移到群體機器人的系統上,多個機器人能夠相互協調及合作來完成許多單一機器人難以完成的任務。本文研究對象以應用於智慧生活之機器人為主,首先將發展高精度之Wiimote室內定位技術,即時提供機器人之座標位置;接著以全向移動載具作為機器人之移動平台,並結合Arduino控制器、紅外線測距、CMOS camera、電子羅盤及XBee無線通訊模組等元件,藉此發展機器人導航功能,其中包含避障、沿牆行走、跟隨、目標辨識與方向修正方法,同時也建立了基本的無線通訊網路及群體操控環境,使機器人具備移動、感測、計算及通訊的能力,進而完成高機動性之群體自主型機器人;最後針對群體機器人系統設計一套專屬的人機介面,讓使用者可以很方便地與機器人互動,使機器人更具實用性。由實驗結果得知,Wiimote 系統能夠進行多目標之絕對座標定位;在導航方法及群體操控技術方面,機器人皆能順利執行任務;而在整合群體機器人系統與人機介面後,我們亦成功將其應用於智慧生活中,達到人與機器人互動之效果。
Utilizing the advantage of group movement and cooperation of mobile units are long term pursuit by researchers in robotics and artificial intelligence fields. By integrating sensors, on-board microcontroller, and wireless communication protocol in a ubiquitous computation environment, it is possible to realize group control of a set of autonomously guided mobile robots for realizing tasks in various applications of distributed control, intelligent living, and even biomimic applications. This dissertation mainly focuses on the autonomous manipulation of grouped mobile robots on smart living applications. In order to realize the goal, a fleet containing four omni-directional mobile robots are designed and assembled. Various sensors and communication devices, such as Arduino controller, IR range finders, CMOS camera, electronic compass, and XBee wireless communication, are integrated with the main structure. Essential localization and navigation schemes are also developed. First, an accurate Wiimote indoor localization technique is proposed and validated, which provides the location of robots in real time. Then, solutions for key navigation issues, such as obstacle avoidance, wall following, target following and recognizing, and direction correction of movement, are proposed and demonstrated. Meanwhile, essential wireless communication network and autonomous manipulations are also successfully developed for coordinating group members toward efficient group manipulation. Finally, a special human-machine interface is also designed for manipulating the robot group, which allows the user to interact directly with the robots. The experimental results indicated that the proposed Wiimote localization scheme can perform absolute-coordinated localization of multi targeting successfully. Through demonstrations, the proposed navigation schemes can resolve basic problems in indoor group robot manipulation and more complicated and task-oriented cooperative motions can be realized. With the developed human-machine interface and internet remote control, it is expected that the methodologies and algorithms proposed by this work can be successfully adapted into various applications in smart living technology, biomimic robots, and even dynamic architecture related applications in the future.
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 X
圖目錄 XI
符號說明 XIX
第一章 緒論
1.1 前言 1
1.2 研究源起 5
1.3 相關研究之簡介 8
1.4 研究動機與目標 11
1.5 全文架構 13
第二章 研究背景介紹
2.1 本章介紹 15
2.2 群體機器人應用之相關研究 17
2.3 室內定位技術之相關研究 19
2.3.1 常見之定位方法 19
2.3.2 Wiimote定位技術 21
2.4 機器人導航設計方法之相關研究 24
2.5 使用者介面之相關研究 30
2.6 本章結論 32
第三章 Wiimote室內定位技術
3.1 本章介紹 34
3.2 2D平面定位技術之應用 36
3.2.1 硬體配置及討論 36
3.2.2 雙區域定位系統 38
3.2.3 多目標定位 40
3.3 3D空間定位技術發展 48
3.3.1 硬體配置及幾何方法 48
3.3.2 定位實驗 51
3.3.3 實驗結果與討論 53
3.4 本章結論 59
第四章 機器人導航方法之設計
4.1 本章介紹 61
4.2 機器人架構之建立 63
4.2.1 自主型機器人 64
4.2.2 全向移動載具之運動學模型 65
4.3 避障之設計方法 68
4.3.1 設計構想 68
4.3.2 避障原理 69
4.3.3 實驗與結果討論 72
4.4 沿牆行走之設計方法 81
4.4.1 設計構想 81
4.4.2 沿牆行走原理 82
4.4.3 實驗與結果討論 85
4.5 本章結論 94
第五章 群體機器人操控環境之建立
5.1 本章介紹 96
5.2 網路拓撲介紹及運用 98
5.3 跟隨之設計方法 103
5.3.1 設計構想 103
5.3.2 跟隨方法 105
5.3.3 實驗與結果討論 109
5.4 機器人辨識方法 117
5.4.1 設計方法 117
5.4.2 實驗與結果討論 118
5.5 方向修正之設計方法 121
5.5.1 設計構想 121
5.5.2 方向修正原理 122
5.5.3 實驗與結果討論 124
5.6 本章結論 129
第六章 群體機器人之操控及導航實驗
6.1 本章介紹 131
6.2 實驗系統之建立 133
6.2.1 整體實驗系統架構 133
6.2.2 群體模式情境 134
6.2.3 方法整合 137
6.3 群體機器人實驗 138
6.3.1 同步操控 138
6.3.2 自由行動之防撞展示 140
6.3.3 領導型機器人與跟隨型機器人之群體動作 143
6.4 實驗結果之性能討論 146
6.5 本章結論 148
第七章 發展人機介面與智慧生活之應用
7.1 本章介紹 150
7.2 LabVIEW人機介面介紹 152
7.3 互動面板發展與操作 154
7.3.1 定位資訊顯示及操作面板 154
7.3.2 地圖面板之目標追蹤 156
7.3.3 障礙物掃描面板 158
7.3.4 人機介面整合 160
7.4 智慧生活之情境展示 161
7.4.1 A to B目標追蹤 162
7.4.2 群體隊形變換 169
7.4.3 遠端監控 171
7.5 本章結論 172
第八章 研究結果與討論
8.1 本章介紹 174
8.2 Wiimote定位系統 176
8.3 機器人導航方法及群體操控 179
8.4 人機介面與智慧生活之應用 183
8.5 整體研究成果與延伸討論 185
8.6 本章結論 189
第九章 結論與未來展望
9.1 全文歸納 191
9.2 本文結論 193
9.3 本文貢獻 195
9.4 未來展望 197
參考文獻 199
附錄A 機器人之硬體元件 209
附錄B 主控端LabVIEW程式 215
附錄C 機器人Arduino程式 219

[1]智慧型機器人產業分析及投資機會, 經濟部投資業務處, 2008.
[2]International Federation of Robotics, http://www.ifr.org/
[3]Triadtech Enterprise Co., Ltd., http://www.tec-robot.com.tw/eng-profile.html/
[4]Buildup International Trading Co., Ltd., http://www.asiamachinery.net/supplier/profile.asp?SupID=4182
[5]Taiwan Daifuku Co., Ltd., http://www.taiwandaifuku.com/company/index.php
[6]TOYOTA Inc., http://www.toyota.co.jp/en/special/robot/
[7]Shin Kong Security Co., Ltd., http://www.sks.com.tw/index.php?option=com_content&view=article&id=327&Itemid=153
[8]財團法人精密機械研究發展中心, http://upitor.pmc.org.tw/zh/home.asp
[9]M. Guarnieri, R. Kurazume, H. Masuda, T. Inoh, K. Takita, P. Debenest, R. Hodoshima, E. Fukushima, and S. Hirose, HELIOS system: A team of tracked robots for special urban search and rescue operations, The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2795-2800, St. Louis, USA, 2009.
[10]SENSEable City Laboratory, MIT: http://senseable.mit.edu/
[11]陳柏維, 歐廣順, 林韋澄, 陳國聲, Wiimote紅外線室內定位技術與運動控制應用於智慧建築之研究, 中國機械工程學會第二十六屆全國學術研討會論文集, 成功大學, 2009.
[12]J. G. Fleischer, A method for biomemetic design of a cooperative mobile robot system to accomplish a foraging task, Master Thesis, Colorado State University, Fort Collins, CO, USA, 1999.
[13]F. Mondada, L. M. Gambardella, D. Floreano, S. Nolfi, J.-L. Deneubourg, and M. Dorigo, The cooperation of swarm-bots: Physical interactions in collective robotics, IEEE Robot. Autom. Mag., Vol.12, pp.21, 2005.
[14]L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, LANDMARC: Indoor location sensing using active RFID, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, pp.407-415, 2003.
[15]R. Want, A. Hopper, V. Falcão, and J. Gibbons, The active badge location system, ACM Transaction on Information Systems, Vol.40, pp.91-102, 1992.
[16]M. Maeda, T. Ogawa, T. Machida, and H. Takemura, Position detection for a navigation support by augmented reality using infrared identifications, Technical Report of the Institute of Electronics, Information and Communication Engineers of Japan, Image Engineering, Vol.102, pp.59-64, 2002.
[17]N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, The cricket location-support system, in Proc. 6th ACM MOBICOM, Boston, MA 2000.
[18]G. Mao, B. Fidan, and B. D. O. Anderson, Wireless sensor network localization techniques, Computer Networks, Vol.51, pp.2529-2553, 2007.
[19]P. Baronti, P. Pillai1, V. Chook, S. Chessa, A. Gotta, and Y. F. Hu, Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards, Computer Communications, Vol.30, pp.1655-1695, 2007.
[20]J. Yick, B. Mukherjee, and D. Ghosal, Wireless sensor network survey, Computer Networks, Vol.52, pp.2292-2330, 2008.
[21]S. Yun, J. Lee, W. Chung, E. Kim, and S. Kim, A soft computing approach to localization in wireless sensor networks, Expert Systems with Applications, Vol.36, pp.7552-7561, 2009.
[22]卓尚澤, 室內定位技術簡介, 元智大學老人福祉科技研究中心, 2009.
[23]ITRI, http://www.itri.org.tw/
[24]陳柏維, Wiimote紅外線室內定位技術與運動控制應用於機器建築與智慧生活之研究, 國立成功大學奈米科技暨微系統工程系碩士論文, 2010.
[25]S. Tilch and R. Mautz, Current investigations at the ETH Zurich in optical indoor positioning, 7th Workshop on Positioning Navigation and Communication, pp.174-178, Dresden, Germany, March 2010.
[26]K. Rebai, A. Benabderrahmane, O. Azouaoui, and N. Ouadah, Moving obstacles detection and tracking with laser range finder, International Conference on Advanced Robotics, pp.1-6, 2009.
[27]S. M. Killough and F. G. Pin, Design of an omnidirectional and holonomic wheeled platform prototype, IEEE International Conference on Robotics and Automation, Vol.1, pp.84-90, 1992.
[28]W. K. Loh, K. H. Low, and Y. P. Leow, Mechatronics design and kinematic modelling of a singularityless omni-directional wheeled mobile robot, IEEE International Conference on Robotics and Automation, Vol.3, pp.3237- 3242, 2003.
[29]吳建中, 莊杉良, 智慧生活空間系統可監控居家環境的機器人, Conference on Information Technology and Applications in Outlying Islands, 2009.
[30]顧迪, 發展Wiimote室內定位技術與全向移動載具軌跡追蹤控制器與其於智慧生活之應用, 國立成功大學機械工程學系碩士論文, 2011.
[31]SwarmLab, Department of Knowledge Engineering, Maastricht University: http://www.unimaas.nl/swarmlab/
[32]J. McLurkin, Department of Computer Science, Rice University: http://people.csail.mit.edu/jamesm/index.php
[33]SENSEable City Lab in collaboration with ARES Lab, http://senseable.mit.edu/flyfire/
[34]M. N. Rooker and A. Birk, Multi-robot exploration under the constraints of wireless networking, Control Engineering Practice, Vol.15, pp.435-445, 2007.
[35]C. Luo, A. P. Espinosa, D. Pranantha, and A. D. Gloria, Multi-robot search and rescue team, International Symposium on Safety, Security and Rescue Robotics, pp.296-301, 2011.
[36]C. Luo, A. P. Espinosa, A. D. Gloria, and R. Sgherri, Air-ground multi-agent robot team coordination, International Conference on Robotics and Automation, pp.6588-6591, China, 2011.
[37]H. Isshiki, et al., Theory of indoor GPS by using reradiated GPS signal, in National Technical Meeting Proceedings Integrating Technology, 2002.
[38]林韋澄, 慣性導航之訊號飄移抑制方法設計與實驗分析, 國立成功大學機械工程學系碩士論文, 2009.
[39]S. Park and S. Hashimoto, Autonomous mobile robot navigation using passive RFID in indoor environment, IEEE Transactions on Industrial electronics, Vol.56, No.7, pp.2366-2373, 2009.
[40]D. Maeda, K. Mizugaki, R. Fujiwara, T. Nakagawa, M. Miyazaki, K. Suzuki, and K. Yano, Tagless location system using UWB impulse radio, in Radio and Wireless Symposium, 2009. RWS '09. IEEE, pp. 671-674, 2009.
[41]C. L. Hwang and C. Y. Shih, A distributed active-vision network-space approach for the navigation of a car-like wheeled robot, IEEE Transactions on Industrial electronics, Vol.56, No.3, pp.846-855, 2009.
[42]J. Jang, S. Han, H. Kim, C. K. Ahn, and W. H. Kwon, Rapid control prototyping for robot soccer, Cambridge Journals Online - Robotica, Vol.27, pp.1091-1102, 2009.
[43]A. H. Pratomo et al., Position and obstacle avoidance algorithm in robot soccer, Journal of Computer Science, Vol.6, pp.173-179, 2010.
[44]T. Yoshimi et al., Development of a person following robot with vision based target detection, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.5286-5291, Beijing, China, 2006.
[45]C. H. Hu, X. D. Ma, and X. Z. Dai, Reliable person following approach for mobile robot in indoor environment, International Conference on Machine Learning and Cybernetics, Vol.3, pp.1815-1821, 2009.
[46]Y. Hu, W. Zhao, L. Wang, and Y. Jia, Underwater target following with a vision-based autonomous robotic fish, American Control Conference, pp.5265-5270, St. Louis, MO, USA, 2009.
[47]C. H. Chao et al., Real-time target tracking and obstacle avoidance for mobile robots using two cameras, ICROS-SICE International Joint Conference, Japan, 2009.
[48]Y. Wang, S. Fang, Y. Cao, and H. Sun, Image-based exploration obstacle avoidance for mobile robot, Chinese Control and Decision Conference, pp.3019-3023, China, 2009.
[49]D. Nagahara and S. Takahashi, Mobile robot control based on information of the scanning laser range sensor, The 11th IEEE International Workshop on Advanced Motion Control, pp.258-261, Nagaoka, Japan, 2010.
[50]Y. C. Chang, Y. Y. Lwin, and Y. Yamamoto, Sensor-based trajectory planning strategy for non-holonomic mobile robot with laser range sensors, IEEE International Symposium on Industrial Electronics, pp.1755-1760, Seoul, Korea, 2009.
[51]G. Fu, P. Corradi, A. Menciassi, and P. Dario, An integrated triangulation laser scanner for obstacle detection of miniature mobile robots in indoor environment, IEEE/ASME Transactions on Mechatronics, Vol.16, No.4, pp.778-783, 2011.
[52]S. Stiene and J. Hertzberg, Virtual range scan for avoiding 3D obstacles using 2D tools, International Conference on Advanced Robotics, pp.1-6, Munich, 2009.
[53]H. Kim, W. Chung, and Y. Yoo, Detection and tracking of human legs for a mobile service robot, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp.812-817, Canada, 2010.
[54]T. T. Quyen Bui and K. S. Hong, Sonar-based obstacle avoidance using region partition scheme, Journal of Mechanical Science and Technology, Vol.24, pp.365-372, 2010.
[55]S. Kim and H. Kim, Optimally overlapped ultrasonic sensor ring design for minimal positional uncertainty in obstacle detection, International Journal of Control, Automation, and Systems, Vol.8, No.6, pp.1280-1287, 2010.
[56]Y. S. Chen and J. G. Juang, Intelligent obstacle avoidance control strategy for wheeled mobile robot, ICROS-SICE International Joint Conference, pp.3199-3204, Japan, 2009.
[57]C. C. Wong, C. T. Cheng, K. H. Huang, and Y. T. Yang, Fuzzy control of humanoid robot for obstacle avoidance, International Journal of Fuzzy Systems, Vol.10, No.1, 2008.
[58]Y. J. Wen, C. H. Tsai, W. S. Yu, and P. C. Lin, Infrared sensor based target following device for a mobile robot, International Conference on Advanced Intelligent Mechatronics, pp.49-54, Budapest, 2011.
[59]M. Kim, N. Y. Chong, H. S. Ahn, and W. Yu, RFID-enabled target tracking and following with a mobile robot using direction finding antennas, International Conference on Automation Science and Engineering, pp.1014-1019, USA, 2007.
[60]B. S. Choi, J. W. Lee, and J. J. Lee, Target-following scheme for mobile robots based on the virtual sub-goal points, Information - An International Interdisciplinary Journal, Vol.13, No.6, pp. 1929-1938, 2010.
[61]G. Zecca, P. Couderc, M. Banatre, and R. Beraldi, Swarm robot synchronization using RFID tags, International Conference on Pervasive Computing and Communications, pp.1-4, USA, 2009.
[62]R. C. Luo, N. W. Chang, S. C. Lin, and S. C. Wu, Human tracking and following using sensor fusion approach for mobile assistive companion robot, Annual Conference of IEEE on Industrial Electronics, pp.2235-2240, 2009.
[63]M. Kristou, A. Ohya, and S. Yuta, Target person identification and following based on omnidirectional camera and LRF data fusion, 20th IEEE International Symposium on Robot and Human Interactive Communication, pp.419-424, USA, 2011.
[64]T. M. DAT et al., Intelligent autonomous navigation system for the wheeled mobile robot, Journal of Advanced Materials Research, Vols. 383-390, pp.1611-1618, 2012.
[65]T. Germa, F. Lerasle, N. Ouadah, and V. Cadenat, Vision and RFID data fusion for tracking people in crowds by a mobile robot, Computer Vision and Image Understanding, Vol.114, No.6, pp.641-651, 2010.
[66]R. C. Luo, C. H. Huang, and T. T. Lin, Human tracking and following using sound source localization for multisensor based mobile assistive companion robot, 36th Annual Conference on IEEE Industrial Electronics Society, pp.1552-1557, USA, 2010.
[67]W. Li and W. Shen, Swarm behavior control of mobile multi-robots with wireless sensor networks, Journal of Network and Computer Applications, Vol.34, No.4, pp.1398-1407, 2011.
[68]U. H. Chi, Formal specification of user interfaces: A comparison and evaluation of four axiomatic approaches, IEEE Transactions on Software Engineering, pp.671-685, 1985.
[69]N. Andrienko, G. Andrienko, H. Voss, F. Bernardo, J. Hipolito, and U. Kretchmer, Testing the usability of interactive maps in CommonGIS, Cartography and Geographic Information Science, pp.325-342, 2002.
[70]Shneiderman & Plaisant, 人機介面設計-有效的人機互動策略, (曾志軒譯), 東華出版社2005.
[71]Y. Wakita, N. Yamanobe, K. Nagata, N. Ando, and M. Clerc, Development of user interface with single switch scanning for robot arm to help disabled people using RT-middleware, 10th Intl. Conf. on Control, Automation, Robotics and Vision, pp.1515-1520, 2008.
[72]K. Tsui, H. Yanco, D. Kontak, and L. Beliveau, Development and evaluation of a flexible interface for a wheelchair mounted robotic arm, The 3rd ACM/IEEE international conference on Human robot interaction, pp.105-112, 2008.
[73]Y. H. Seo, S. S. Kwak, and T. K. Yang, Mobile robot control using smart phone and its performance evaluation, Advanced Communication and Networking - Communications in Computer and Information Science, Vol.199, pp.362-369, 2011.
[74]K. Masuda, T. Horiguchi, K. Ookomori, H. Watanabe, K. Ozawa, T. Yoshinaga, and Y. Aoki, Development of graphical user interface to control remote probe by reflecting contact force on body surface for tele-echography system, 4TH European conference of the international federation for medical and biological engineering, Vol.22, pp.927-931, 2008.
[75]翁義清, 全向移動機器人之路徑追蹤, 國立成功大學工程科學系碩士論文, 2007.
[76]M. H. Chen, D. Gu, Y. D. Fu, C. H. Pi, K. S. Ou, and K. S. Chen, Wireless group manipulation of autonomously guided mobile robots for smart living space applications, Proc. SICE 2011, 50th Annual Conf. of the Society of Instrument and Control Engineers of Japan, pp.2143-2148, Tokyo, Japan, Sep. 2011.
[77]陳名薪, 顧迪, 傅育德, 畢家興, 歐廣順, 陳國聲, 無線群控自主機器人於智慧生活空間的應用, 中國機械工程學會第二十八屆全國學術研討會, 台中, 2011.
[78]M. H. Chen, Y. T. Fu, K. S. Ou, and K. S. Chen, Development of navigation schemes for mobile robot group toward biomimetic applications, International Journal of Automation and Smart Technology, Vol.2, No.1, pp.29-41, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊