跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/06 03:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:秦崇閔
研究生(外文):Chung-MinChin
論文名稱:一SSCp-SUU上肢肌肉骨骼模型及其於上肢驅動輪椅與一復健機械手之肌力分析的應用
論文名稱(外文):A SSCp-SUU Musculoskeletal Model of the Upper Limb and Its Applications on the Muscular Force Analysis of Operating Wheelchairs and a Rehabilitation Robot
指導教授:邱顯堂
指導教授(外文):Shen-Tarng Chiou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:231
中文關鍵詞:肌肉骨骼模型上肢肌力分析復健機械手輪椅
外文關鍵詞:Musculoskeletal modelUpper limbMuscular force analysisRehabilitation robotWheelchair
相關次數:
  • 被引用被引用:4
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:1
為了手動器具的研發並預估其操作時的效果,許多人致力於發展一套更準確且可靠的上肢肌肉骨骼及其分析模型。但在許多研究中,常因肩帶較為複雜而簡化忽略之,或僅針對於上肢的單一關節進行特定的動作而探討之。本研究嘗試建立一包含肩部及手臂之人體上肢肌肉骨骼模型,並建立其位移、肌肉長度及肌力分析等模式,以期能分析上肢在操作各式器具時,各肌肉之出力和各關節負荷等。
本研究使用一SSCP-SUU空間機構以模擬人體上肢骨骼系統,並以此模型為基礎,又分別建立了用以模擬人體上肢驅動輪椅之RUUS-SSCP機構模型及模擬上肢驅動復健機械手之FUS-SSCP機構模型。接著分別以齊次坐標轉換矩陣及迴路方程式推導其位移分析方程式,且利用一影像量測系統追蹤上肢在運動過程中,各關節之位置,並以其當作輸入,進而進行運動分析。
首先以Obstacle-set方法分別建立上肢驅動輪椅及上肢驅動復健機械手時之肌肉路徑與長度之分析模式。並針對肌肉參數提出正規化之方法,且增加數條手臂至手掌之肌肉。其次將各個關節的負荷及肌肉之激發因子作為待求之未知數,並加入適當之限制條件讓肌力的作用能使關節結合,再配合Hill肌力模型建立可分析上肢肌力與關節負荷之分析模式。最後分別將此模式應用於上肢驅動復健機械手與上肢驅動輪椅的實例分析,以分別說明各分析模式的使用及顯示各分析所得之結果;另外,於上肢驅動復健機械手時,亦量測了四條主要肌肉的EMG訊號,其趨勢與肌力分析所得結果相符。
本文所提出的模型及所建立的各種分析模式,應有助於進一步建立更完整的上肢肌肉骨骼模型;對於醫療器材、上肢輔具以及手動器具之設計亦應有其參考價值。

For the development of hand-operating apparatuses and investigating their effects, there are many researchers attempting to construct a more precise and reliable musculoskeletal model of the upper limb. However, many of them chose to ignore the shoulder girdle might because it is too complicate to include, or focused themselves on a particular joint of the upper limb doing a specified motion only. The purpose of this study is to propose a musculoskeletal model of the upper limb including the shoulder girdle, and to develop models for its motion, muscular length and muscular force analyses which can be applied on the analysis of muscular force and joint loads during operating various devices with upper limbs.
The SSCP-SUU spatial mechanism is proposed to simulate the skeletal model of the upper limb. Based on the model, the RUUS-SSCP mechanism and the FUS-SSCP mechanism are proposed to simulate an upper limb propelling a wheelchair, and driving a rehabilitation robot, respectively. The homogeneous coordinate transformation and loop-closure equation are applied to derive the displacement analysis equations. A 2-camera tracking system is applied to measure the positions of the joints during the upper limb movements. These data are used as the inputs for the kinematic analysis.
The obstacle-set method is adopted to build the analysis models of muscle paths and its lengths during the motions. A normalize method is proposed for scaling the bone and muscle parameters. Furthermore, several main muscles between arms and hand are included within the model. Based on Hill-type muscular model, the models for the muscle force and joint load analysis are developed. Constraints to avoid joint-separation are considered in these models, and muscle activations and joint forces are used as unknown variables. Finally, an upper limb operating a rehabilitation robot and propelling a wheelchair are used as examples to show the usage of the models developed and to display the analysis results. Furthermore, the EMG signals of four main muscles for an upper limb operating the rehabilitation robot are measured and compared with those calculated by using the model, which verify the usability of the proposed models.
The musculoskeletal models and the analysis methodologies proposed in this study may aid on further design and development of the medical instruments, the upper limb assisting devices and hand tools.

摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 xi
符號說明 xxvi
第一章 前言 1
1-1 研究動機 1
1-2 文獻回顧 1
1-2-1 上肢驅動輪椅理論模型 1
1-2-2 復健機械手 3
1-2-3 肌肉路徑及肌力分析模型 5
1-2-4 上肢肌肉骨骼模型 7
1-3 研究目的及方法 11
1-4 本文內容 12
第二章 上肢骨骼系統及其位置分析 13
2-1 上肢骨骼模型 13
2-2 位置分析 14
2-2-1 手推輪椅 14
2-2-2 復健機械手 24
2-3 空間點位置之量測 28
2-4 實例分析 34
2-4-1 手推輪椅 35
2-4-2 復健機械手 42
2-5 本章小結 49
第三章 肌肉長度與等長肌力分析 50
3-1 肌肉相關參數之正規化 50
3-2 經由手腕連至手掌之肌肉 52
3-3 實例分析 55
3-3-1 肌肉相關參數 55
3-3-2 未繞經障礙物 57
3-3-3 球演算法 58
3-3-4 單圓柱演算法 61
3-3-5 雙圓柱演算法 62
3-3-6 球筒演算法 64
3-4 本章小結 66
第四章 肌力與關節負荷分析 67
4-1 理論模式 67
4-1-1 手推輪椅 67
4-1-2 復健機械手 73
4-2 實例分析 75
4-2-1 手推輪椅 75
4-2-2 復健機械手 80
4-3 本章小結 85
第五章 結論與建議 87
參考文獻 90
附錄A 人體上肢骨骼與肌肉 100
A.1 骨骼與關節 100
A.2 肌肉 105
A.3 肌肉與動作 113
附錄B 位置分析結果 117
B.1 手推輪椅 117
B.2 復健機械手 122
附錄C 肌肉路徑演算法 126
C.1 齊次坐標轉換矩陣 126
C.2 肌肉路徑演算法 127
C.2.1 球 127
C.2.2 單圓柱 131
C.2.3 雙圓柱 133
C.2.4 球筒 136
C.3 肌肉長度之驗證 139
C.3.1 球演算法之驗證模式 139
C.3.2 單圓柱演算法之驗證模式 142
C.3.3 雙圓柱演算法之驗證模式 144
附錄D 肌肉路徑與位置分析的相關數據 146
D.1 計算肌肉繞經障礙物之路徑所需的數據 146
D.2 各肌肉路徑上之經過點 160
附錄E Hill模型 171
E.1 等長肌力 171
E.2 肌肉參數 173
E.3 肌力特性曲線數據 175
附錄F 肌肉長度分析結果 177
F.1 手推輪椅 177
F.2 復健機械手 185
附錄G 等長肌力分析結果 194
G.1 手推輪椅 194
G.2 復健機械手 202
附錄H 肌力分析結果 211
H.1 手推輪椅 211
H.2 復健機械手 221
著作權聲明(Copyright Statement) 231

Ambrosio, J., Quental, C., Pilarczyk, B, Folgado, J., and Monteiro, J., 2011, Multibody Biomechanical Models of the Upper Limb, Procedia IUTAM, 2011 Symposium on Human Body Dynamics, Vol. 2, pp. 4-17.
An, K. N., Hui, F. C., Morrey, B. F., Linscheid, R. L., and Chao, E. Y., 1981, Muscles Across the Elbow Joint: A Biomechanical Analysis, Journal of Biomechanics, Vol. 14, No. 10, pp. 659-669.
Angel, G.-A., Antonio, D. A.-E., Enrique, P.-R., Soraya, P.-N., and Luis P. R.-R., 2010, Upper Limb Joint Kinetics During Manual Wheelchair Propulsion in Patients with Different Levels of Spinal Cord Injury, Journal of Biomechanics, Vol. 43, No. 13, pp. 2508-2515.
Argosy Publishing, 2010, http://www.visiblebody.com, 31st May.
Audenaert, A., and Audenaert, E., 2008, Global Optimization Method for Combined Spherical–Cylindrical Wrapping in Musculoskeletal Upper Limb Modeling, Computer Methods and Programs in Biomedicine, Vol. 92, pp. 8-19.
Blajer, W., Czaplicki, A., Dziewiecki, K., and Mazur, Z., 2010, Influence of Selected Modeling and Computational Issues on Muscle Force Estimates, Multibody System Dynamics, Vol. 24, No. 4, pp. 473-492.
Blana, D., Hincapie, J. G., Chadwick, E. K., and Kirsch, R. F., 2008, A Musculoskeletal Model of the Upper Extremity for Use in the Development of Neuroprosthetic Systems, Journal of Biomechanics, Vol. 41, No. 8, pp. 1714-1721.
Blemker, S. S., and Delp S. L., 2006, Rectus Femoris and Vastus Intermedius Fiber Excursions Predicted by Three-Dimensional Muscle Models, Journal of Biomechanics, Vol. 39, pp. 1383-1391.
Burgar, C. G., Lum, P. S., Erika S., Garber, S. L., van der Loos, M., Kenney, D., and Shor, P., 2011, Robot-Assisted Upper-Limb Therapy in Acute Rehabilitation Setting Following Stroke: Department of Veterans Affairs Multisite Clinical Trial, Journal of Rehabilitation Research and Development, Vol. 48, No 4, pp. 445-458.
Chao, E., Y., S., 2003, Graphic-Based Musculoskeletal Model for Biomechanical Analyses and Animation, Medical Engineering & Physics, Vol. 25, pp. 201-212.
Charlton, I. W., and Johnson, G. R., 2001, Application of Spherical and Cylindrical Wrapping Algorithms in a Musculoskeletal Model of the Upper Limb, Journal of Biomechanics, Vol. 34, pp. 1209-1216.
Cheng, E. J., Brown, I. E., and Loeb, G. E., 2000, Virtual Muscle: A Computational Approach to Understanding the Effects of Muscle Properties on Motor Control, Journal of Neuroscience Methods, Vol. 101, pp. 117-130.
Chumanov, E. S., Heiderscheit, B. C., and Thelen, D. C., 2007, The Effect of Speed and Influence of Individual Muscles on Hamstring Mechanics during the Swing Phase of Sprinting, Journal of Biomechanics, Vol. 40 pp. 3555–3562.
Colombo, R., Pisano, F., Micera, S., Mazzone, A., Delconte, C., Carrozza, M. C., Dario, P., and Minuco, G., 2005, Robotic Techniques for Upper Limb Evaluation and Rehabilitation of Stroke Patients, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 13, No. 3, pp. 311-324.
Crowninshield, R. D., and Brand, R. A., 1981, A Physiologically Based Criterion of Muscle Force Prediction in Locomotion, Journal of Biomechanics, Vol. 14, No. 11, pp. 793-801.
Damsgaard, M., Rasmussen, J., Visser, B., Christensen, S. T., Surma, E., and Zee, M. D., 2006, Analysis of Musculoskeletal Systems in the AnyBody Modeling System, Simulation Modeling Practice and Theory, Vol. 14, pp. 1100-1111.
Davoodi, R., Brown, I. E., and Loeb, G. E., 2003, Advanced Modeling Environment for Developing and Testing FES Control Systems, Medical Engineering & Physics, Vol. 25, pp. 3-9.
Desailly, E., Sardain, P., Khouri, N., Yepremian, D., and Lacouture, P., 2010, The Convex Wrapping Algorithm: A Method for Identifying Muscle Paths Using the Underlying Bone Mesh, Journal of Biomechanics, Vol. 43, No. 13, pp. 2601-2607.
Desroches, G., Dumas, R., Pradon, D., Vaslin, P., Lepoutre, F.-X., and Chèze, L., 2010, Upper Limb Joint Dynamics during Manual Wheelchair Propulsion, Clinical Biomechanics, Vol. 25, No. 4, pp. 299-306.
Dickerson, C. R., Chaffin, D. B., and Hughes, R. E., 2007, A Mathematical Musculoskeletal Shoulder Model for Proactive Ergonomic Analysis, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 10, No. 6, pp. 389-400.
Dubowsky, S. R., Rasmussen, J., Sisto, S. A, and Langrana, N. A, 2008, Validation of a Musculoskeletal Model of Wheelchair Propulsion and Its Application to Minimizing Shoulder Joint Forces, Journal of Biomechanics, Vol. 41, pp. 2981-2988.
Erol, D., and Sarkar, N., 2008, Coordinated Control of Assistive Robotic Devices for Activities of Daily Living Tasks, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 16, No. 3, pp. 278-285.
Formica, D., Zollo1, L., Guglielmelli, E., and Rodgers, M. M., 2006, Torque-Dependent Compliance Control in the Joint Space for Robot-Mediated Motor Therapy, Journal of Dynamic Systems, Measurements and Control, Vol. 128, pp. 152-158.
Gao, F., Damsgaard, M., Rasmussen, J., and Christensen, S. T., 2002, Computational Method for Muscle-Path Representation in Musculoskeletal Models, Biological Cybernetics, Vol. 87, pp. 199-210.
Garner, B. A., and Pandy, M. G., 1999, A Kinematic Model of the Upper Limb Based on the Visible Human Project (VHP) Image Dataset, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 2, No. 2, pp. 107-124.
Garner, B. A., and Pandy, M. G., 2000a, The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 3, pp. 1-30.
Garner, B. A., and Pandy, M. G., 2000b, Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 4, No. 2, pp. 93-126.
Garner, B. A., and Pandy, M. G., 2003, Estimation of Musculotendon Properties in the Human Upper Limb, Annals of Biomedical Engineering, Vol. 31, No. 2, pp. 207-220.
Gonzalez, R. V., Buchanant, T. S., and Delp, S. L., 1997, How Muscle Architecture and Moment Arms Affect Wrist Flexion-Extension Moments, Journal of Biomechanics, Vol. 30, No. 7, pp. 705-712.
Heikkila, J., and Silven, O., 1997, A Four-Step Camera Calibration Procedure with Implicit Image Correction, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1106-1112.
Heintz, S., and Gutierrez-Farewik, E. M., 2007, Static Optimization of Muscle Forces during Gait in Comparison to EMG-to-Force Processing Approach, Gait & Posture, Vol. 26, pp. 279-288.
Högfors, C., Sigholm, G., and Herberts, P., 1987, Biomechanical Model of the Human Shoulder — I. Elements, Journal of Biomechanics, Vol. 20, No. 2, pp. 157-166.
Högfors, C., Sigholm, G., and Herberts, P., 1991, Biomechanical Model of the Human Shoulder — II. The Shoulder Rhythm, Journal of Biomechanics, Vol. 24, No. 8, pp. 699-709.
Holzbaur, K. R. S., Murray, W. M., and Delp, S. L., 2005, A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control, Annals of Biomedical Engineering, Vol. 33, No. 6, pp. 829-840.
Howarth, S. J., Pronovost, L. M., Polgar, J. M., Dickerson, C. R., and Callaghan, J. P., 2010, Use of a Geared Wheelchair Wheel to Reduce Propulsive Muscular Demand During Ramp Ascent: Analysis of Muscle Activation and Kinematics, Clinical Biomechanics, Vol. 25, No. 1, pp. 21-28.
Hughes, A., Freeman, C., Burridge, J., Chappell, P., Lewin, P., and Rogers, E., 2009, Upper Limb Rehabilitation of Stroke Participants Using Electrical Stimulation: Changes in Tracking and EMG Timing, IEEE 11th International Conference on Rehabilitation Robotics.
Huq, R., Kan, P., Goetshalckx, R., Hebert, D., Hoey, J., and Mihailidis, A., 2011, A Decision-Theoretic Approach in the Design of an Adaptive Upper-Limb Stroke Rehabilitation Robot,, 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1-8.
Iida, T., Ding, M., Takemura, H., and Mizoguchi, H., 2011, Development and Validation of Lower Limb Musculoskeletal Model for Pinpointed Muscle Force Control, 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1355-1360.
Jacobson, M. D., Raab, R., Fazeli, B. M., Abrams, R. A., Botte, M. J., and Lieber, R. L., 1992, Architectural Design of the Human Intrinsic Hand Muscles, The Journal of Hand Surgery, Vol. 17, No. 5, pp. 804-809.
Karlsson, D., and Peterson, B., 1992, Toward a Model for Force Predictions in the Human Shoulder, Journal of Biomechanics, Vol. 25, No. 2, pp. 189-199.
Kikuuwe, R., Yamamoto, T., and Fujimoto, H., 2008, A Guideline for Low-Force Robotic Guidance for Enhancing Human Performance of Positioning and Trajectory Tracking: It Should Be Stiff and Appropriately Slow, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, Vol. 38, No. 4, pp. 945-957.
Kirihara, K., Saga, N., and Saito, N., 2010, Design and Control of an Upper Limb Rehabilitation Support Device for Disabled People Using a Pneumatic Cylinder, Industrial Robot, Vol. 37, No. 4, pp. 354-363.
Kumar, P., Chen, C. H., Sebastian, A., Anugolu, M., Potluri, C., Fassih, A., Yihun, Y., Jensen, A., Tang, Y., Chiu, S., Bosworth, K., Naidu, D. S., Schoen, M. P. , Creelman, J., and Urfer, A., 2011, An Adaptive Hybrid Data Fusion Based Identification of Skeletal Muscle Force with ANFIS and Smoothing Spline Curve Fitting, 2011 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 932-938.
Kung, P. C., Lin, C. C. K., Ju, M. S., 2009, Time Course of Abnormal Synergies of Stroke Patients Treated and Assessed by a Neuro-rehabilitation Robot, IEEE International Conference on Rehabilitation Robotics, ICORR 2009, pp. 12-17.
Laurence, R., and Agnes, R.-B., 2006, Shoulder Movements during the Initial Phase of Learning Manual Wheelchair Propulsion in Able-Bodied Subjects, Clinical Biomechanics, Vol. 21, pp. S45-S51.
Laursen. B., Sogaard, K., and Sjogaard, G., 2003, Biomechanical Model Predicting Electromyographic Activity in Three Shoulder Muscles from 3D Kinematics and External Forces during Cleaning Work, Clinical Biomechanics, Vol. 18 pp. 287-295.
Li, L., Tong, K., Song, R., and Koo, T. K. K., 2007, Is Maximum Isometric Muscle Stress the Same among Prime Elbow Flexors, Clinical Biomechanics, Vol. 22, pp. 874-883.
Lieber, R. L., Fazeli, B. M., and Botte, M. J., 1990, Architecture of Selected Wrist Flexor and Extensor Muscles, The Journal of Hand Surgery, Vol. 15A, No. 2, pp. 244-250.
Lieber, R. L, Jacobson, M. D., Fazeli, B. M., Abrams, R. A., and Botte, M. J., 1992, Architecture of Selected Muscles of the Arm and Forearm: Anatomy and Implications for Tendon Transfer, The Journal of Hand Surgery, Vol. 17A, No. 5, pp. 787-798.
Louis, N., and Gorce, P., 2009, Upper Limb Muscle Forces during a Simple Reach-to-Grasp Movement: A Comparative Study, Medical and Biological Engineering, Vol. 47, pp. 1173-1179.
Louis, N., and Gorce, P., 2010, Surface Electromyography Activity of Upper Limb Muscle during Wheelchair Propulsion: Influence of Wheelchair Configuration, Clinical Biomechanics, Vol. 25, No. 9, pp. 879-885.
Mao, K., Li, X., Jiang, N., Meng, F., Jin, Y. and Dai, Y., 2012, The Design and Implementation of the Passive Upper Limb Rehabilitation Rpbpt Based on Magnetic Powder Brakes, International Symposium on IT in Medicine and Education (ITME), Vol. 1, pp. 341-345.
Masia, L., Krebs, H. I., Cappa, P., and Hogan, N., 2007, Design and Characterization of Hand Module for Whole-Arm Rehabilitation Following Stroke, IEEE/ASME Transactions on Mechatronics, Vol. 12, No. 4, pp. 399-407.
Menegaldo, L. L., Fleury, A. de T., and Weber, H. I., 2003, Biomechanical Modeling and Optimal Control of Human Posture, Journal of Biomechanics, Vol. 36, pp. 1701–1712.
Menegaldo, L. L., Fleury, A. de T., and Weber, H. I., 2004, Moment arms and Musculotendon Lengths Estimation for a Three-Dimensional Lower-Limb Model, Journal of Biomechanics, Vol. 37, pp. 1447-1453.
Menegaldo, L. L., Fleury, A. de T., and Weber, H. I., 2006, A 'Cheap' Optimal Control Approach to Estimate Muscle Forces in Musculoskeletal Systems, Journal of Biomechanics, Vol. 39, pp. 1787-1795.
Mercer, J. L., Boninger, M., Koontz, A., Ren, D., Dyson-Hudson, T., and Cooper, R., 2006, Shoulder Joint Kinetics and Pathology in Manual Wheelchair Users, Clinical Biomechanics, Vol. 21, No. 8, pp. 781-789.
Moody, C. B., Barhorst, A. A., and Schovanec, L., 2009, A Neuro-Muscular Elasto-Dynamic Model of the Human Arm Part 2: Musculotendon Dynamics and Related Stress Effects, Journal of Bionic Engineering, Vol. 6, pp. 108-119.
Morrow, M. M. B., Hurd, W. J., Kaufman, K. R., and An, K. N., 2010, Shoulder Demands in Manual Wheelchair Users Across a Spectrum of Activities, Journal of Electromyography and Kinesiology, Vol. 20, pp. 61-67.
Murray, I. A., and Johnson, G. R., 2004, A Study of the External Forces and Moments at the Shoulder and Elbow while Performing Every Day Tasks, Clinical Biomechanics, Vol. 19, No. 6, pp. 586-594.
Muscles and Tendons, 2012, http://www.wheelessonline.com/ortho/muscle_index, 21st May.
Nunes, W. M., Rodrigues, L. A. O., Oliveira, L. P., Ribeiro, J. F., Carvalho, J. C. M. and Goncalves, R. S., 2011, Cable-Based Parallel Manipulator for Rehabilitation of Shoulder and Elbow Movements, 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1-6.
Ogihara, N., and Yamazaki, N., 1999, Generation of Human Reaching Movement Using a Recurrent Neural Network Model, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vol. 2, pp. 692-697.
Ohara, E., Watanabe, T., Oishi, T., Aoki, T., Nishimoto, Y, and Yano, K., 2011, Assistance Control of Wheel Chair Operation Using Active Cast for the Upper Limb, IEEE International Conference on Robotics and Automation (ICRA), pp. 2223-2228.
Ozawa, T., Furusho, J., Kikuchi, T., Akai, H., Fukushima, K., Fukuda, T., Tanida, S., Fujikawa, T., and Kano, S., 2010, Development of Rehabilitation System for Upper Limbs, PLEMO-P3 System for Hemiplegic Subject (Motor Function Test for Assessment and Training, and Research for Development of Practical Type), Transactions of the Japan Society of Mechanical Engineers, Part C, Vol. 76, No. 762, pp. 323-330.
Pennestrì, E., Stefanelli, R., Valentini, P. P., Vita, L., 2007, Virtual Musculo-Skeletal Model for the Biomechanical Analysis of the Upper Limb, Journal of Biomechanics, Vol. 40, No. 6, pp. 1350-1361.
Rengifo, C., Aoustin, Y., Plestan, F., and Chevallereau, C., 2010, Distribution of Forces Between Synergistics and Antagonistics Muscles Using an Optimization Criterion Depending on Muscle Contraction Behavior, Journal of Biomechanical Engineering, Vol. 132, No. 4, pp.1-10.
Rosati, G., Gallina, P., and Masiero, S., 2007, Design, Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 15, No. 4, pp. 560-569.
Rosen, J., and Perry, J. C., 2007, Upper Limb Powered Exoskeleton, International Journal of Humanoid Robotics, Vol. 4, No. 3, pp. 529-548.
Sakai, N., Sawae, Y., and Murakami, T., 2006, A Development of Joint Mechanism of Robot Arm Based on Human Shoulder Morphology, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, February 20-22, Pisa, Italy, pp. 982-987.
Sasaki, M., Shimakura, T., Obinata, G. and Yammaguchi, M., 2010, Adaptability Evaluation of Wheelchair Based on Physical and Mental Load, IEEE International Symposium on Micro-Nano Mechatronics and Human Science (MHS), pp. 198-202.
Seth, A., and Pandy, M. G., 2007, A Neuromusculoskeletal Tracking Method for Estimating Individual Muscle Forces in Human Movement, Journal of Biomechanics, Vol. 40, pp. 356-366.
Shan, G., and Bohn, C., 2003, Anthropometrical Data and Coefficients of Regression Related to Gender and Race, Applied Ergonomics, Vol. 34, No. 4, pp. 327-337.
Soetanto, D.,and Kuo, C-Y., 2002, Improved Dynamics Model for Human Standing Posture Control Using Functional Neuromuscular Stimulation, International Journal of Systems Science, Vol. 33, No. 2, pp. 129-140.
Song, Z.,and Guo, S., 2011, Implementation of Self-Rehabilitation for Upper Limb Based on a Haptic Device and an Exoskeleton Device, 2011 International Conference on Mechatronics and Automation (ICMA), pp. 1911-1916.
Van der Helm, F. C. T., Veeger, H. E. J., Pronk, G. M., Van der Woude, L. H. V., and Rozendal, R. H., 1992, Geometry Parameters for Musculoskeletal Modelling of the Shoulder System, Journal of Biomechanics, Vol. 25, No. 2, pp. 129-144.
Van der Helm, F. C. T., 1994, A Finite Element Musculoskeletal Model of the Shoulder Mechanism, Journal of Biomechanics, Vol. 27, No. 5, pp. 551-569.
Veeger, H. E. J., Yu, B., An, K. N., and Rozendal, R. H., 1997, Parameters for Modeling the Upper Extremity, Journal of Biomechanics, Vol. 30, No. 6, pp. 647-652.
Veeger, H. E. J., Rozendaal, L. A., and Van der Helm, F. C. T., 2002, Load on the Shoulder in Low Intensity Wheelchair Propulsion, Clinical Biomechanics, Vol. 17, No. 3, pp. 211-218.
Wei, S.-H., Huang, S.-L., Jiang, C.-J., and Chiu, J.-C., 2003, Wrist Kinematic Characterization of Wheelchair Propulsion in Various Seating Positions: Implication to Wrist Pain, Clinical Biomechanics, Vol. 18, No. 6, pp. S46-S52.
Weng, J., Cohen, P., and Herniou, M., 1992, Camera Calibration with Distortion Models and Accuracy Evaluation, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 10, pp. 965-980.
Wu, H., van der Helm, Frans, C. T., Veeger, H. E. J. (DirkJan), Makhsouse, M., Roy, P. V., Angling, C., Nagelsh, J., Kardunai, A. K., McQuadej, K., Wangk, X., Wernerl, F. W., and Buchholzm, B., 2005, ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand, Journal of Biomechanics, Vol. 38, pp. 981-992.
Zajac, F. E., 1989, Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control, Biomedical Engineering, Vol. 17, No. 4, pp. 359-411.
Zhang, Z., 1999, A Flexible New Technique for Camera Calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330-1334.
Zhang, L.-L., Zhou, J., Zhang, X.-A., and Wang, C.-T., 2011, Upper Limb Musculo-Skeletal Model for Biomechanical Investigation of Elbow Flexion Movement, Journal of Shanghai Jiaotong University (Science), Vol. 16, No. 1, pp. 61-64.
沈柏宇,2010,一SSCP-S肩部肌肉骨骼模型及其於手臂外展動作之運動及肌力分析的應用,碩士論文,國立成功大學機械工程研究所,台南,台灣。
林槐庭,2005,肩關節骨骼肌肉系統動態圖像模擬及生物力學分析,博士論文,國立成功大學醫學工程研究所,台南市,台灣。
吳庭岳,2011,使用S-SUCr-U肌肉骨骼模型於上肢驅動輪椅與一復健機械手之肌力分析的研究,碩士論文,國立成功大學機械工程研究所,台南,台灣。
徐玉珍,2003,輪椅設計系統之研發,碩士論文,國立台北科技大學機電整合研究所,台北,台灣。
許世昌,2001,解剖生理學,永大書局有限公司,台北,台灣。
陳宜成,2010,使用SUU為基礎之模型於上肢驅動輪椅及復健機械手之運動及靜力分析,碩士論文,國立成功大學機械工程研究所,台南,台灣。
陳健行與陳柏松編譯, 2003,彩色解剖學圖譜,合計圖書出版社,台北,台灣。(原著:Putz, R., and Pabst, R., 2000, Atlas of Human Anatomy, Urban & Fischer, Munchen Jena.)
郭藍遠,2003,推力最佳化輪椅研究,博士論文,國立成功大學醫學工程研究所,台南,台灣。
張豐榮與郭玉梅 編譯,1990,人體的地圖,暢文出版社,台北,台灣。(原著:高橋長雄,1898,からだの地図帳,講談社,音羽,文京區,東京都,日本)
張駿偉,2002,人體上肢三維電腦模型之建構,碩士論文,國立台灣大學醫學工程學研究所,台北市,台灣。
楊境睿,2000,脊椎損傷患者輪椅驅動之上肢生物力學分析,碩士論文,國立成功大學醫學工程研究所,台南,台灣。
楊書菱與許怡婷 編譯,2007,認識關節:關節的功能與構造,合記圖書出版社,台北,台灣。(原著:Bernard, K., 2000, Understanding Joints: A Practical Guide to Their Structure and Function, Nelson Thornes Limited, Cheltenham, UK)
劉定宣,2003,3D電腦視覺之攝影機校正,碩士論文,國立成功大學航空太空工程研究所,台南,台灣。
劉豪哲,2011,一S-SUCr-U上肢骨骼模型及其於上肢驅動輪椅與復健機械手的運動及負荷分析,碩士論文,國立成功大學機械工程研究所,台南,台灣。
鄭博文,2010,一SUU上肢肌肉骨骼模型及其於驅動輪椅與一復健機械手之肌力分析的應用,碩士論文,國立成功大學機械工程研究所,台南,台灣。
蕭學隆,1997,復健用機器人研究,碩士論文,國立成功大學機械工程學系,台南,台灣。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top