跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昌曄
研究生(外文):Chang-YeLi
論文名稱:外差及光譜偏光儀於光學旋光性與圓二色性之量測
論文名稱(外文):Heterodyne Polarimetry and Spectroscopic Polarimetry for Measuring the Optical Rotatory Dispersion and Circular Dichroism of Anisotropic Optical Media
指導教授:羅裕龍
指導教授(外文):Yu-Lung Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:98
中文關鍵詞:光學旋轉角圓二色性外差干涉儀史托克參數傅立葉轉換光譜儀
外文關鍵詞:optical rotation anglecircular dichroismheterodyne interferometerStokes parametersFourier transform spectrometer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的在於開發新的共光路光學外差偏光儀來量測一對掌性物質之光學旋轉角(CB)與圓二色性(CD)橢圓率之資訊。藉由以此外差干涉架構中所量測到的光強訊號,經由適當的電子訊號處理來同時求得出我們所要的CB與CD之資訊。經由本系統所得到的兩個光學參數CB和CD是彼此互相不影響的,因此能提升量測的精度,而此方法所量測到的光學參數還能達到全域的範圍。利用本實驗所提出的方法分別測試不同的樣品,單純具有CB性質、單純具有CD性質和單純具有CB與CD性質的樣品。實驗結果顯示量測單純具有CB性質的葡萄糖溶液(De-ionized water containing D-glucose)的標準偏差為1.28×10-3。而同時量測到的光學旋轉角(CB)與圓二色性(CD)的標準偏差分別為3.07×10-3度與9.3×10-4。最後,此量測系統可能造成誤差的原因,為光學元件旋轉所造成的誤差以及元件本身的不完美,對量測的結果都會有所影響。另外電光調變器些微的角度誤差,經由此訊號處理的過程可以被濾除。
此外,本研究也提出藉由傅立葉轉換光譜儀來量測光譜史托克參數,可用於分析蛋白質的結構。此量測技術利用旋轉四種角度的四分之一波片與偏振片,取得的四張干涉圖經由適當的運算處理,搭配史托克參數和傅立葉轉換,成功的解出包含在干涉圖裡的資訊史托克光譜圖。最後模擬的結果顯示,利用此量測方法可成功的量測出所需的參數,並顯示出光譜偏光儀的可行性。未來這也將會是我們致力於發展之方向。

A method is proposed for measuring the circular birefringence (CB) and circular dichroism (CD) properties of anisotropic optical samples using a heterodyne polarimeter and an electronic signal processing scheme. Importantly, the CB and CD properties of the sample are decoupled in the analytical model, and thus the accuracy of the measurement results is improved. Furthermore, the proposed method enables the CB and CD properties of the sample to be measured over the full range. The validity of the proposed method is demonstrated by measuring the optical rotation angle and circular diattenuation of pure CB and CD samples and a composite sample with both CB and CD properties. The standard deviations of the optical rotation angle and circular dichroism are found to be 3.07×10-3 degrees and 9.3×10-4 for a hybrid CD/CB sample, respectively. Also, the D-glucose experimental results have showed that the standard deviation is found to be 9.3×10-4 degree.
In addition, we also propose a scheme to measure the spectral of Stokes parameter by Fourier transform spectrometer for the analysis structure of protein (i.e. CD sample). This measuring technique is based on Fourier transform and Stokes parameters where the Stokes vector information is modulated onto the spectrum via four interferograms. These carrier frequencies can be observed in the interferogram taken from a Fourier transform spectrometer, thereby providing a more direct means of acquiring the spectropolarimetric data.

Abstract I
中文摘要 III
誌謝 V
Table of Contents VI
List of Figures IX
List of Tables XII
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Review of the Optical Activity Measurement 2
1.3 Overview of Chapters 8
Chapter 2 Optical Properties of Materials 10
2.1 The Optical Properties of Birefringence 10
2.2 Circular Birefringent Materials 16
2.3 Circular Dichroic Materials 19
Chapter 3 The Heterodyne Interferometer 22
3.1 Preface 22
3.2 Principle of Traditional Interference 22
3.3 Basic Theory of Heterodyne Interference 23
3.4 Common-Path Heterodyne Interferometry 25
3.5 The Modulating Technique of Electro-Optic Modulator 26
3.5.1 Electro-Optic Effect 27
3.5.2 Electro-Optic Modulation 28
3.5.2.1 Amplitude Modulation 28
3.5.2.2 Phase Modulation 33
Chapter 4 Measurement of the Optical Rotation Angle and Circular Dichroism of Anisotropic Optical Media by Using the New Heterodyne Polarimeter 36
4.1 Modeling of Hybrid CB/CD Media Using Differential Formulation 36
4.2 Principles of Heterodyne Interferometry 38
4.2.1 Extration of CB Properties 38
4.2.2 Extration of CD Properties 43
4.3 Experimental Validation of Proposed Measurement Method 46
4.3.1 Measurement of Pure CB Sample Properties 48
4.3.2 Measurement of Pure CD Sample Properties 53
4.3.3 Measurement of Hybrid CB/CD Sample Properties 55
4.3.4 Error Analysis of the CB and CD 57
Chapter 5 Measurement of the Stokes Parameters by Using the Fourier Transform Spectrometer 65
5.1 General Definitions of the Fourier Transform 65
5.2 Michelson Interferometer 67
5.3 Theoretical Analysis in the Stokes Parameter by Using the Michelson Interferometer 73
5.4 Simulation Result 79
5.4.1 Simulation Results of the Interferogram 79
5.4.2 Simulation Results of the Spectrum Stokes Parameters 85
Chapter 6 Conclusion and Future Work 88
6.1 Conclusions 88
6.1.1 Conclusion of Measurement of the Optical Rotation Angle and Circular Dichroism of and Anisotropic Optical Media by Using the New Heterodyne Polarimeter 88
6.1.2 Conclusion of Simulation of the Stokes Parameters by Using the Fourier Transform Spectrometer 90
6.2 Future Work 90
Bibliography 92

Azzam R. M. A., “Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4 × 4 matrix calculus, J. Opt. Soc. Am., Vol. 68, pp. 1756-1767, (1978)

Bahar E., “Detection and identification of optical activity using polarimetry-applications to biophotonics, biomedicine and biochemistry, J. Biophoton. Vol. 1, No. 3, pp. 230-237, (2008).

Claborn K., Faucher E. P., Kurimoto M., Kaminsky W., and Kahr B., “Circular Dichroism imaging microscopy: Application to enantiomorphous twinning in biaxial crystals of 1, 8-dihydroxyanthraquinone, J. AM. CHEM. SOC. Vol. 125, No 48, pp. 14825-14831, (2003).

Gazalet, M. G., Ravez, M., Haine, F., Bruneel, C., and Bridoux, E., “Acousto-optic low frequency shifter, Appl. Opt., Vol. 33, 1293-1298 (1994).

Gelmini, E., Minomi, U., and Docchio, F., “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement, Opt. Lett., Vol. 19, 213-215 (1994).

Goldstein, D., Polarized Light, Marcel Dekker, Inc. 2003


Haus, H. A., Waves and fields in optoelectronics, Prientice-Hall, Inc., Englewood Cliffs, New Jersey, Ch. 12 (1984).

Hariharan, P., Optical interfeometry, Academic Press (1983).

Hecht E., Optics, Fourth ed. USA: Addison Wesley, 2002.

Hecht, Optics, Addision-Wesley, 4th ed., Ch. 7, 282-286 (1998).

Hecht, Optics, Addision-Wesley, 4th ed., Ch. 8, 336-344 (1998).

Hou W. and Wilkening G., “Investigation and compensation of the nonlinearity of heterodyne interferometers, Precis. Eng. Vol. 14, No. 2, pp. 91-98, (1992)

Hu H. Z., “Polarization heterodyne interferometry using a simple rotating analyzer. 1: Theory and error analysis,Applied Optics, Vol. 22, No 13, pp. 2052-2056, (1983).

Kaminsky W., Geday M. A., Cedres J. H., and Kahr B., “Optical rotator and circular dichroic scattering, J. Phys. Chem. Vol. 107, No 16, pp. 2800-2807, (2003).

Kaminsky W., Claborn K., and Kahr B., “Polarimetric imaging of crystals, Chem. Soc. Rev., Vol. 33, issue 8, pp. 514-525, (2004).

Kauppinen J., and Partanen J., Fourier Transforms in Spectroscopy, Wiley-vch (2001).

Kelly S. M., Jess T. J., and Price N. C., “How to study proteins by circular dichroism, Bioch. Bioph. Acta, Vol. 1751, issue 2, pp. 119-139, (2005).

Kelly S. M., Jess T. J., and Price N. C., How to study proteins by circular dichroism, Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, Vol. 1751(2), pp. 119-139,( 2005).

Kemp, J. C., “Piezo-optical birefringence modulators: new use for a long known effect, J. Opt. Sci. Am., Vol. 59, 950-954 (1969).

Kliger D. S., Lewis J. W., and Randall C. E., Polarized light in optics and spectroscopy, Academic Press, Inc., (1990)

Kothiyal, M. P. and Delisle, C., “Optical frequency shifter for heterodyne interferometry using coumterrotating wave plates, Opt. Lett., Vol. 9, 319-321 (1984).

Lo Y.L. and Yu T.C., Polarimetric Glucose Sensor Using a Liquid-Crystal Polarization Modulator Driven by a Sinusoidal Signal, Optics Communications, Vol. 259, No. 1, pp. 40-48, (2006).

Malik B. H. and Cote G. L., “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring, J. Biomed. Opt., Vol. 15(1), No 017002, pp. 1-6, (2010).

Michalewicz Z., “Genetic Algorithm + Data structure = Evolution Programs,Springer-Verlag, New York (1994)

Mitsui T. and Sakurai K., “Precise measurement of the refractive index and optical rotatory power of a suspension by a delayed optical heterodyne technique, Applied Optics, Vol. 35, No 13, pp. 2253-2258, (1996).

Muller T., Wiberg K. B., and Vaccaro P. H., “A new scheme for probing circular birefringence and circular dichroism in the gas phase, J. Phys. Chem. A, Vol. 104, No. 25, pp. 5959-5968, (2000).

Nakanishi K., Berova N., and Woody R. W., Circular dichroism: principles and applications, Wiley-VCH (1994).

Nunes J. A., Tong W. G., Chandler D. W., Rahn L. A., “Circular Dichroism Spectroscopy by Four-Wave Mixing Using Polarization Grating-Induced Thermal Gratings,J. Phys. Chem. A, Vol. 101, No. 18, pp. 3279-3283, (1997).



Pham T.T.H., Lo Y. L., and Chen P. C., “Design of polarization-insensitive optical fiber probe based on effective optical parameters,IEEE/OSA J. Light. Technol. Vol. 29, Issue 8, pp. 1127-1135 (2011).

Rosenbluth A. E. and Bobroff N., “Optical sources of nonlinearity in heterodyne interferometers,Precis. Eng. Vol. 12, No. 1, pp. 7-11, (1990)

Smith B. C., Findamentals of Fourier Transform Infrared Spectroscopy, CRC Press, Inc., (1996)

Swords N. A. and Wallace B. A., “Circular-dichroism analyses of membrane proteins: examination of environmental effects on bacteriorhodopsin spectra, Biochem. J., Vol. 289, pp. 215-219, (1993)

Suzuki, T. and Hioki, R., “Translation of light frequency by moving grating, J. Opt. Soc. Am., Vol. 57, 1551(1967).

Suits, J. C., “Magneto-optical rotation and ellipticity measurements with a spinning analyzer, Rev. Sci. Instrum., Vol. 42, 19-22 (1971).

Schubert Mathias, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems, Phys. Rev. B., Vol.53, 4265 (1996)


Takasaki, H., Umeda, N., and Tsukiji, M., “Stabilized transverse Zeeman laser as a new light source for optical measurement, Appl. Opt., Vol. 19, 435-441(1980).

Velluz L., Legrand M., and Grosjean M., “Optical Circular Dichroism,Academic (1965).

Wan Q., Cote G. L., and Dixon J. B., “Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence, J. Biomed. Opt., Vol. 10(2), No 024029, pp 1-8, (2005).

Wieglhofer W. S. and Lakhtakia A., Introduction to complex mediums for optics and electromagnectics Vol. PM123. Bellingham, WA, USA: SPIE Press, (2003).

Wickramasingle, H. K., Laser heterodyne probes, Optical Metrology, NATO ASI series (1987).

Yariv, A. and Yeh, P., Optical waves in crystal, John Wiley&Sons, Inc., Ch. 4 (1984).

Zsila F., Molnar P., Deli J., and Lockwood S. F., “Circular dichroism and absorption spectroscopic data reveal binding of the natural cis-carotenoid bixin to human α-acid glycoprotein, Bioorganic Chem., Vol. 33, pp. 298-309, (2005).

許正治,使用外差干涉儀測量光學常數之研究,國立交通大學光電工程研究所碩士論文,2003.

鄭諭燦,共路徑外差干涉儀順序量測雙折射晶體光學參數之設計與研究,國立成功大學機械工程研究所碩士論文,2005

池弘偉,全場式光學外差干涉儀應用於量測雙折射晶體光學參數之設計與研究,國立成功大學機械工程研究所碩士論文,2005

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊