跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建廷
研究生(外文):Jian-TingLin
論文名稱:具溝槽之波紋形微混合器中剪切稀化流體的混合
論文名稱(外文):Mixing of shear-thinning fluids in a corrugated micromixer with grooves
指導教授:吳志陽
指導教授(外文):Chih-Yang Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:149
中文關鍵詞:微混合器剪切稀化流體波紋形溝槽
外文關鍵詞:micromixershear-thinning fluidscorrugatedgrooves
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本文探討剪切稀化流體在具溝槽之波紋形微混合器中的混合行為。為了比較目的,本文對具交錯鯡魚骨式溝槽波紋形微混合器及具交錯鯡魚骨式溝槽直形微混合器的混合性能進行研究,所使用之剪切稀化流體為羧甲基纖維素水溶液。本文使用數值模擬軟體CFDRC模擬微混合器中流體的混合現象。在製程上,使用SU-8厚膜光阻,透過光微影技術製作微混合器的母模,再以PDMS翻模後與載坡片接合,完成微混合器之製作,並使用雷射共軛焦光譜顯微鏡觀察玫瑰紅螢光溶液的濃度分布影像,且實驗影像與模擬結果呈現合理的吻合。本文結果顯示:(1)具交錯鯡魚骨式溝槽波紋形微混合器的混合效率優於波紋形微混合器及具交錯鯡魚骨式溝槽直形微混合器;(2)在相同流率下,因為去離子水的平均黏度低於羧甲基纖維素水溶液,其橫向對流作用及混合度皆優於羧甲基纖維素水溶液;(3)微混合器的壓降與混合流體的平均黏度成正比。
In this works, we investigate the mixing behavior of shear-thinning fluids in corrugated micromixers with grooves. For comparison purpose, the performance of the corrugated micromixers with staggered herringbone grooves and that of the straight micromixers with staggered herringbone are also studied. The shear-thinning fluids considered are the carboxymethyl cellulose (CMC) Solution. We use software, CFDRC, to simulate the fluid flow and diffusion in the micromixers. In fabrication, SU-8 thick film photoresist is used to fabricate the mold of the micromixers by photolithography. Then, replicating the mold by PDMS and bonding the mold and a cover glass complete the fabrication of a micromixer. The concentration distribution of Rhodamine 6G in the flow is observed by a laser confocal spectral microscopy. The images of mixing fluids obtained by experiment and simulation are in reasonable agreement. The results obtained show the following trends. (i) The mixing efficiency of the corrugated micromixers with staggered herringbone grooves is better than that of the corrugated micromixers without grooves and that of the straight micromixers with the staggered herringbone grooves. (ii) Since the average viscosity of the deionized (DI) water is less than that of the CMC solutions at the flow rate considered, the effect of the lateral convection and the degree of mixing of the DI water are lager than that of the CMC solution. (iii) The pressure drop in a micromixer is proportional to the average viscosity of the fluid in the micromixer.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
符號說明 xvii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-3 研究動機 3
1-4 本文架構 3
第二章 流道外形與數值模擬 4
2-1 微混合器之幾何尺寸 4
2-1-1 具交錯鯡魚骨式溝槽波紋形微混合器 4
2-1-2 具交錯鯡魚骨式溝槽直型微混合器 4
2-1-3 波紋形微混合器 4
2-2 基本假設 5
2-3 統御方程式 5
2-4邊界條件 6
2-5 無因次化與邊界條件 7
2-6 數值模擬 8
2-6-1 以CFD-GEOM做微混合器之幾何形狀與網格建立 8
2-6-2 以CFD-ACE+ 做模擬運算 9
2-6-3 以CFD-VIEW做後處理 9
2-7混合度 9
第三章 微型混合器的製作與觀測 11
3-1 微混合器的製作 11
3-1-1 光罩製作 11
3-1-2 母模製作 11
3-1-3 翻模 14
3-1-4 PDMS成品接合與管線接合 14
3-2 實驗流程 15
3-2-1 工作流體與微量式注射幫浦 15
3-2-2 實驗前置作業 15
3-2-3 實驗影像擷取 15
第四章 結果與討論 17
4-1簡介 17
4-2網格測試 17
4-3實驗與模擬結果之比較 18
4-4不同流體在各種微混合器中之混合情況 18
4-4-1 波紋形微混合器中之混合情況 18
4-4-2 具交錯鯡魚骨式溝槽微混合器中之混合情況 22
4-4-3具交錯鯡魚骨式溝槽波紋形微混合器中之混合情況 25
4-5不同流體在各種微混合器中之壓降比較 31
4-6綜合討論 32
第五章 結論與未來展望 35
5-1 結論 35
5-2 未來展望 35
參考文獻 36
附錄 39
附錄A:統御方程式之直角坐標展開式 39

[1]A. Manz, N. Graber, H. M. Widmer, “Miniaturized total chemical analysis system: a novel concept for chenical sensing, Sensor and Actuators, B: Chemical, Vol. 1, pp. 244-248, 1990.
[2]V. Vivek, Y. Zeng, E. S. Kim, “Novel acoustic-wave micromixer, The Annual International Conference on Micro Electro Mechanical Systems, pp. 668-673, 2000.
[3]Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto and R. Maeda, “Ultrasonic micromixer for microfluidic systems, Sensors and Actuators, A: Physical, Vol. 93, pp. 266-272, 2001.
[4]L. H. Lu, K. S. Ryu, C. Liu, “A magnetic microstirrer and array for microfluidic mixing, Journal of Microelectromechanices systems, Vol. 11, pp. 462-469, 2002.
[5]T. Nishimura, S. Murakami, S. Arakawa and Y. Kawamura, “Flow observations and mass transfer characteristics in symmetrical wavy-walled channels at moderate Reynolds numbers for steady flow, Heat mass transfer, Vol. 33, pp.835-845, 1990.
[6]A. M. Guzman, C. H. Amon, “Dynamical flow characterization of transitional and chaotic regimes in converging-diverging channels, The Journal of Fluid Mechanics, Vol. 321, pp. 25-57, 1996.
[7]X. Xuan, D. Li, “Particle motions in low-Reynolds number pressure-driven flows through converging–diverging microchannels, Journal of Micromechanics and Microengineering, Vol. 16, pp. 62-69, 2006.
[8]A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, G. M. Whitesides, “Chaotic mixer for microchannels, Science, Vol. 295, pp. 647-651, 2002.
[9]A. D. Stroock, S. K. W. Dertinger, G. M.Whitesides, A. Ajdari, “Patterning flows using grooved surfaces, Analytical Chemistry, Vol. 74, pp. 5306-5312, 2002.
[10]Jing-Tang Yang,Wei-Feng Fang, Kai-Yang Tung, “Fluids mixing in devices with connected-groove channels, Chemical Engineering Science, Vol. 63, pp. 1871-1881, 2008.
[11]F. Schönfeld, S. Hardt, “Simulation of helical flows in microchannels, American Institute of Chemical Engineers, Vol. 50, pp. 771-778, 2004.
[12]D. S. Kim, S. W. Lee, T. H. Kwon, S. S. Lee, “A barrier embedded chaotic micromixer, Journal of Micromechanics and Microengineering, Vol. 14, pp. 798-805, 2004.
[13]林雨欣, “具溝槽之波紋形微混合器中的流體混合, 國立成功大學機械工程研究所碩士論文, 2011.
[14]J. A. Pathak, D. Ross, K. B. Migler, “Elastic flow instability, curved streamlines, and mixing in microfluids flow, Physics of Fluid, Vol. 16, pp. 4028-4034, 2004.
[15]C. Srisamran and S. Devahastin, “Numerical simulation of flow and mixing behavior of impinging streams of shear-thinning fluids, Chemical Engineering Science, Vol. 61, pp. 4884-4892, 2006.
[16]M. Boutabaa, L. Helin, G. Mompean, L. Thais, “Numerical study of Dean vortices in developing Newtonian and viscoelastic flows through a curved duct of square cross-section, Comptes Rendus Mecanique, Vol. 337, pp. 40-47, 2009.
[17]M. Hadigol , R. Nosrati, A. Nourbakhsh and M. Raisee, “Numerical study of electroosmotic micromixing of non-Newtonian fluids, Journal of Non-Newtonian Fluid Mechanics, Vol. 166, pp. 965-971, 2011.
[18]R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, 2nd ed, Wiley, New York, 2002.
[19]U. Meseth, T. Wohland, R. Rigler, and H. Vogel, “Resolution of fluorescence correlation measurements, Biophysical Journal, Vol. 76, pp.1619 -1631, 1999.
[20]Amy L. Ventresca, Q. Cao and A.K. Prasad, “The Influence of Viscosity Ratio on Mixing Effectiveness in a Two-fluid Laminar Motionless Mixer, The Canadian Journal of Chemical Engineering, Vol. 80, pp.614-621, 2002.
[21]J. Boss, “Evaluation of the homogeneity degree of a mixture, Bulk Solids Handling, Vol. 6, pp. 1207-1215, 1986.
[22] W. Kozicki, C. H. Chou and C. Tiu, “Non-Newtonian flow in ducts of arbitrary cross-sectional shape, Chemical Engineering Science, Vol. 21, pp. 665-679, 1966.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top