跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張銘峰
研究生(外文):Ming-FengChang
論文名稱:冷卻速率對Sn-Ag-Cu無鉛銲料之組織微結構變化之研究
論文名稱(外文):Effect of Cooling Rate on the Microstructure Evolution of Sn-Ag-Cu Lead-Free Solder
指導教授:李驊登李驊登引用關係
指導教授(外文):Hwa-Teng Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:Sn-Ag-Cu冷卻速率結晶時間Ag3SnCu6Sn5
外文關鍵詞:Sn-Ag-Cucooling ratecrystallization timeAg3SnCu6Sn5
相關次數:
  • 被引用被引用:3
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究針對Sn-3.0Ag-0.5Cu及Sn-3.8Ag-0.7Cu無鉛銲料(簡稱SAC305、SAC387),以0°C、8°C、25°C多組冷卻源之連續冷卻速率實驗,探討冷卻速率對銲料微結構的影響,藉由一系列冷卻速率與金相圖的比較,以釐清其微結構變化。
  研究結果顯示,由於實驗設備經過約250°C預熱,冷卻速率只有些微的變化,但結晶時間隨冷卻速率的降低而明顯增加。Sn-Ag-Cu銲料於非平衡凝固條件下,其共晶凝固可表示為:L→L+(β-Sn+Ag3Sn)→β-Sn
+Ag3Sn+Cu6Sn5;由於Ag、Cu元素添加比例的差異,Cu6Sn5的成長會比Ag3Sn慢,隨冷卻速率的下降與結晶時間的增長,Ag3Sn、Cu6Sn5共晶化合物尺寸及形貌之變化如下:顆粒狀→顆粒狀與針狀混合→針狀→針狀與板狀或長條片狀混合→板狀。
  對機械性質而言,快速的冷卻速率下的Ag3Sn、Cu6Sn5化合物較為細緻且初析β-Sn區域較小,其微硬度較高;而SAC305中的Ag、Cu含量較SAC387少,在冷卻凝固過程中,β-Sn區域生成較多,但SAC305於快冷下的微結構呈較緻密的網狀共晶組織,所以其β-Sn區域對於微硬度的降低沒有太大的影響,所以SAC305微硬度稍低於SAC387。
  Effect of different cooling rates(0°C, 8°C, and 25°C water cooling experiments) on microstructural evolution of Sn-3.0Ag-0.5Cu(SAC305) and Sn-3.8Ag-0.7Cu(SAC387) lead-free solder were investigated. The influence of morphology it produced would be evaluated via tensile strength.
  The study showed the cooling rates are only a few changes by equipment preheat to 250°C. Crystallization time increased significantly with cooling rates decreasing. SAC solder stood on non-equilibrium solidification process, so the process could be expressed as: L→L+(β-Sn+Ag3Sn)→β-Sn+Ag3Sn +Cu6Sn5. Cu6Sn5 compounds would grow slower than Ag3Sn by different proportion of Ag and Cu content. The decline of the cooling rates and the rise of crystallization time made the morphology of Ag3Sn and Cu6Sn5 eutectic compounds develop as : particle-like → particle and needle mixed → needle-like → needle and plate or long flake mixed → plate-like.
  In terms of mechanical properties, the size of Ag3Sn and Cu6Sn5 with rapid cooling was tiny that it had the higher hardness. SAC387 added more Ag content caused that eutectic compounds and β-Sn area grew larger. Hardness of SAC305 is lower than SAC387.
口試合格證書 I
摘要 II
AbstractIII
誌謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
一、前言 1
二、文獻回顧 4
2-1無鉛銲料近年發展概況 5
2-2二元合金銲料 9
2-3Sn-Ag-X三元合金銲料 13
2-4冷卻速率的影響 17
三、實驗步驟與方法 21
3-1實驗規劃 21
3-2試件製備 24
3-3實驗內容 27
四、實驗結果與討論 30
4-1連續冷卻速率曲線分析 30
4-2冷卻速率對銲料微結構之影響 40
4-3冷卻速率對銲料微硬度之影響 61
五、結論 72
六、建議與未來方向 73
七、參考文獻 74

1.P. Cox and G. Drys, Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment, Official Journal of the European Union, 2011.
2.IPC Roadmap: A Guide for Assembly of Lead-Free Electronics, 4th Draft, 2000.
3.M. Abtew and G. Selvaduray, Lead-Free Solders in Microelectronics, Materials Science and Engineering: R: Reports, Vol. 27(5-6), 2000, pp. 95-141.
4.B. Richards, C. Levoguer, and C. Hunt, An Analysis of the Current Status of Lead-Free Soldering, DTI Report, 1999.
5.H.T. Lee, M.H. Chen, H.M. Jao, and C.J. Hsu, Effect of Adding Sb on Microstructure and Adhesive Strength of Sn-Ag Solder Joints Journal of Electronic Materials, Vol. 33(9) , 2004, pp. 1048-1054.
6.H.T. Lee, T.L. Liao, and M.H. Chen, and M.H. Chen, Study on Microstructure and Shear Strength of Sn-Ag-Sb Solder Joints, Electronic Materials and Packaging, 2001 , pp. 315-322.
7.H.T. Lee, H.S. Lin, C.S. Lee, and P.W. Chen, Reliability of Sn-Ag-Sb Lead-Free Solder Joints, Materials Science and Engineering: A, Vol. 407(1-2) , 2005 , pp. 36-44.
8.陳銀發, 冷卻速率與鑭添加對Sn-3.5Ag無鉛銲料銲點微結構性質與機械強度之影響, 國立成功大學機械工程研究所, 博士論文, 2011.
9.C.F. Chen, S.K. Lahiri, and P. Yuan, An Intermetallic Study Joints with Sn-Ag-Cu Lead-Free solder, Electronics Packing Technology Conference, 2000, pp. 72-81.
10.Metallurgy Division of the Material Science and Engineering Laboratory, Ag-Cu-Sn Phase Diagram & Computational Thermodynamics, 2006.
11.M. McCormack, H. Chen, G. Kammlott, and S. Jin, Significantly Improved Mechanical Properties of Bi-Sn Solder Alloys by Ag-Doping, Journal of Electronic Materials, Vol. 26(8), pp. 954-958, 1997.
12.M. Muller, S. Wiese, and K.J. Wolter, Influence of Cooling Rate and Composition on the Solidification of SnAgCu Solders, Electronics Systemintegration Technology Conference, Vol. 2, 2006, pp. 1303-1311.
13.K. Kim, S. Huh, and K. Suganuma, Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys, Materials Science and Engineering: A, Vol. 333(1-2) , 2002, pp. 106-114.
14.J.J. Sundelin, S.T. Nurmi, T.K. Lepisto, Mechanical and Microstructural Properties of SnAgCu Solder Joints, Materials Science and Engineering: A, Vol. 420(1-2) , 2006, pp. 55-62.
15.K.Suganuma,Interface Phenomena in Lead-Free Soldering, Environmentally Conscious Design and Inverse Manufacturing, 1999. Proceedings. EcoDesign '99: First International Symposium On, 1999, pp. 620-625.
16.N. C. Lee, Getting Ready for Lead-free Solders*, Vol. 9(2) , 1997, pp. 65-69.
17.D. Suraski and K. Seelig, The Current Status of Lead-Free Solder Alloys, Electronics Packaging Manufacturing, IEEE Transactions on, Vol. 24(4) , 2001, pp. 244-248.
18.胡順源, Sn-Ag-xSb無鉛錫銲接點與Au/Ni-P/Cu金屬層之界面微結構與剪切強度研究, 國立成功大學機械工程研究所, 碩士論文, 2003.
19.S. Choi, J. Lee, F. Guo, T. Bieler, K. Subramanian, Creep Properties of Sn-Ag Solder Joints Containing Intermetallic Particles, Journal of the Minerals, Metals and Materials Society, Vol. 53(6) , 2001, pp. 22-26.
20.W. Yang, R.W. Messler, and L.E. Felton, Microstructure Evolution of Eutectic Sn-Ag Solder Joints, Journal of Electronic Materials, Vol. 23(8) , 1994, pp. 765-772.
21.K. Suganuma, S.H. Huh, K. Kim, H. Nakase, and Y. Nakamura, Effect of Ag Content on Properties of Sn-Ag Binary Alloy Solder, Materials Transactions-JIM, Vol. 42(2) , 2001, pp. 286-291.
22.D. Flanders, E. Jacobs, and R. Pinizzotto, Activation Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on Copper Substrates, Journal of electronic materials, Vol. 26(7) , 1997, pp. 883-887.
23.J.K. Lin, A. De Silva, D. Frear, Y. Guo, S. Hayes, J.W. Jang, L. Li, D. Mitchell, B. Yeung, and C. Zhang, Characterization of Lead-Free Solders and under Bump Metallurgies for Flip-Chip Package, Electronics Packaging Manufacturing, IEEE Transactions on, Vol. 25(4) , 2002, pp. 300-307.
24.J. Shen, Y. Liu, and H. Gao, Formation of Bulk Cu6Sn5 Intermetallic Compounds in Sn-Cu Lead-Free Solders during Solidification, Journal of Materials Science, Vol. 42(14) , 2007, pp. 5375-5380.
25.W.T. Chen, R.Y. Tsai, Y.L. Lin, and C.R. Kao, Effect of Copper Concentration on the Solid-State Aging Reactions Between Tin-Copper Lead-Free Solders and Nickel, Journal of SMT, Vol.15(4), 2002.
26.R.J. McCabe and M.E. Fine, Creep of Tin, Sb-Solution-Strengthened Tin and SbSn-Precipitate-Strengthened Tin, Metallurgical and Materials Transactions A, Vol. 33(5) , 2002, pp. 1531-1539.
27.Y. Kariya and M. Otsuka, Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) Solder Alloys, Journal of Electronic Materials, Vol. 27(11) , 1998, pp. 1229-1235.
28.T. Lee, W. Choi, K. Tu, J. Jang, S. Kuo, J. Lin, D. Frear, K. Zeng, and J. Kivilahti, Morphology, Kinetics and Thermodynamics of Solid-State Aging of Eutectic SnPb and Pb-Free Solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu, Journal of Materials Research, Vol. 17(2) , 2002, pp. 291-301.
29.K. Kim, S. Huh, and K. Suganuma, Effects of Intermetallic Compounds on Properties of Sn-Ag-Cu Lead-Free Soldered Joints, Journal of Alloys and Compounds, Vol. 352(1-2) , 2003, pp. 226-236.
30.D. Suh, D.W. Kim, P. Liu, H. Kim, J.A. Weninger, C.M. Kumar, A. Prasad, B.W. Grimsley, and H.B. Tejada, Effects of Ag Content on Fracture Resistance of Sn-Ag-Cu Lead-Free Solders under High-Strain Rate Conditions, Materials Science and Engineering: A, Vol. 460, 2007, pp. 595-603.
31.H.T. Lee and Y.F. Chen, Evolution of Ag3Sn Intermetallic Compounds during Solidification of Eutectic Sn-3.5 Ag Solder, Journal of Alloys and Compounds, Vol. 509, 2011, pp. 2510-2517.
32.W. Kurz and D.J. Fisher, Fundamentals of Solidification, 4th rev. ed, 1998.
33.F. Ochoa, X. Deng, and N. Chawla, Effects of Cooling Rate on Creep Behavior of a Sn-3.5 Ag Alloy, Journal of Electronic Materials, Vol. 33(12) , 2004, pp. 1596-1607.
34.F. Ochoa, J. Williams, and N. Chawla, Effects of Cooling Rate on the Microstructure and Tensile Behavior of a Sn-3.5 wt.% Ag Solder, Journal of Electronic Materials, Vol. 32(12) , 2003, pp. 1414-1420.
35.H. Lu, H. Balkan and K. Ng, Effect of Ag Content on the Microstructure Development of Sn-Ag-Cu Interconnects, Journal of Materials Science: Materials in Electronics, Vol. 17, 2006, pp. 171-178.
36.J. Sigelko, S. Choi, K. Subramanian, J.P. Lucas, and T. Bieler, Effect of Cooling Rate on Microstructure and Mechanical Properties of Eutectic Sn-Ag Solder Joints with and without Intentionally Incorporated Cu6Sn5 Reinforcements, Journal of Electronic Materials, vol. 28(11) , 1999, pp. 1184-1188.
37.S.K. Kang, D.Y. Shih, N. Donald, W. Henderson, T. Gosselin, A. Sarkhel, N. Charles Goldsmith, K.J. Puttlitz, and W.K. Choi, Ag3Sn Plate Formation in the Solidification of Near-Ternary Eutectic Sn-Ag-Cu, Journal of the Minerals, Metals and Materials Society, Vol. 55(6) , 2003, pp. 61-65.
38.林冠宇, 冷卻速率對 Sn-Ag-Cu 無鉛銲料 Ag3Sn 形貌及拉伸強度之研究, 國立成功大學機械工程研究所, 碩士論文, 2011.
39.A.C.K. So and Y.C. Chan, Reliability Studies of Surface Mount Solder Joints-Effect of Cu-Sn Intermetallic Compounds, Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on, Vol. 19(3) , 1996, pp. 661-668.
40.白蓉生, 電路板與無鉛銲接, 台灣電路板協會, 2006, pp. 242.
41.I.E. Anderson, J. Walleser, and J. Harringa, Observations of Nucleation Catalysis Effects during Solidification of SnAgCuX Solder Joints, Journal of the Minerals, Metals and Materials Society, Vol. 59(7) , 2007, pp. 38-43.
42.IPC/JEDEC J-STD-020C, 2004.
43.陳銀發, 添加Cu對Sn-Ag-Sb無鉛銲料銲點微結構與剪切強度之影響, 國立成功大學機械研究所, 碩士論文, 2005.
44.K. Jackson and J. Hunt, Lamellar and Rod Eutectic Growth, AIME Met. Soc. Trans., Vol. 236, 1966, pp. 1129-1142.
45.NC254 SAC 305, Manufacturing and Distribution Worldwide.
46.P. Thévoz, J. Desbiolles, and M. Rappaz, Modeling of Equiaxed Microstructure Formation in Casting, Metallurgical and Materials Transactions A, Vol. 20(2) , 1989, pp. 311-322.
47.L. Snugovsky, P. Snugovsky, D.D. Perovic, and J.W. Rutter, Effect of Cooling Rate on Microstructure of Ag-Cu-Sn Solder Alloys, Materials Science and Technology, Vol. 21(1) , 2005, pp. 61-68.
48.X. Deng, N. Chawla, K.K. Chawla, and M. Koopman, Deformation Behavior of (Cu, Ag)-Sn Intermetallics by Nanoindentation, Acta Materialia, Vol.52 (14), 2004, pp. 4291-4303.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top