跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何翌銓
研究生(外文):I-ChuanHo
論文名稱:開發三軸自動光學散射儀並量測微米週期結構之繞射效率
論文名稱(外文):Development of a Three-Axis Automated Scatterometer and the Experimental Demonstration of Diffractions from Periodic Microstructures
指導教授:陳玉彬陳玉彬引用關係
指導教授(外文):Yu-Bin Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:散射儀微/奈米結構複式光柵繞射效率雙方向輻射性質
外文關鍵詞:Bidirectional radiative propertyComplex gratingDiffraction efficiencyMicro/nanostructureScatterometer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
近年來微/奈米製程技術持續進步之下,可製作出的特殊幾何外形之微奈米表面結構,並與電磁波交互作用後,產生特殊現象之輻射性質。隨後製作出的微/奈米結構須經檢測,確認是否會與設計模擬之輻射性質相符,或是在特定頻譜或方向上是否有特殊的現象產生,因此建立了三軸自動光學散射儀做為光學檢測儀器。為此證明三軸自動光學散射儀的性能,挑選了一維和二維複式光柵週期結構,量測其反射繞射效率,均以波長660 nm線性偏振光入射,在一維樣本上以0°和30°入射,以及二維樣本上以0°和30°入射並分別搭配不同入射方位角0°、45°和90°下取得繞射效率圖形。雷射光源穩定度於10小時和角度定位桌準確性,其功率變異係數分別為0.06%和0.77%。再由量測結果中,三軸自動光學散射儀成功達成以共平面與非共平面之量測能力,且繞射效率最小可量測8*10^-5。不論以0°或30°以線性偏振光入射,量測之繞射效率與模擬結果之值與空間分布均合理吻合。最後,在一維樣本的量測結果中發現,相鄰繞射階之間均有微小峰值,推論是「複式」光柵所造成的繞射現象。由結論可證明了三軸自動光學散射儀具有高準確性和重現性,對於檢測樣本之輪廓辨識、塵埃及缺陷鑑別和塗層厚度及透光度有極大的準確度。
Recently, the advancement for technique of micro/nano-fabrication has developed, it can product a special shape on a surface, and interact with electromagnetic wave to bring an exceptional phenomenon. Then, the micro/nanostructure will be inspected to export the results, take it to check with original design, or there is an exceptional phenomenon at a specific spectrum or direction. Therefore, to develop a three-axis automated scatterometer (TAAS) as an optical Inspection instrument. To this end prove the performance of the TAAS by the measurement results, which is use a 660 nm of wavelength of linear polarization as incidence on to 1-D and 2-D complex gratings periodical structure to get the profile of diffraction efficiency. The way of measurement in 1-D sample is that using 0° and 30° of zenith angle for the incidence. The same, in 2-D sample is that use 0° and 30° of zenith angle for the incidence, but with 0°, 45° and 90° of azimuth angle. The stability of light source during 10 hours and the accuracy of goniometric table are 0.06% and 0.77% in coefficient of variation, respectively. TAAS achieved in capable of in-plane and out-of-plane successfully for measurement and at lowest diffraction efficiency is 8*10^-5 can be inspected. without respect to 0° or 30° of zenith angle as incidence of linear polarization, the position of diffraction efficiency distribute in the space and by numerical can match for each well. Finally, there are some lightly peaks at between adjacent diffraction order in the results of 1-D sample. The inference is that the complex grating causes the diffraction to appear. By conclusions to prove TAAS has high accuracy and repeatability in a measurement. This is good for contour recognition, dust and defect identification, and coating thickness and light transmission of optical inspection, especially.
摘要 i
Abstract ii
誌謝 iv
圖目錄 viii
表目錄 xv
符號表 xvii
第一章 緒論 1
1.1 背景介紹 1
1.2 研究動機與目的 2
1.3 繞射效率 3
第二章 三軸自動光學散射儀 5
2.1 元件組成 6
2.1.1 光源及光路 8
2.1.2 角度定位桌系統 16
2.1.3 資料擷取系統 21
2.1.4 LabVIEW人機介面及自動控制系統 27
2.2 校準及性能測試 30
2.2.1 光路水平性 30
2.2.2 角度定位桌刻度補償 33
2.2.3 鎖相放大器參數設定 44
2.2.4 熱電致冷器溫度設定和光源功率穩定度 48
2.2.5 線性偏振光對應分光鏡之分光比及對應其載座之角度 52
2.2.6 角度定位桌準確性和量測角度範圍 60
第三章 待測樣本與量測時座標系建立 63
3.1 待測樣本形貌與尺寸 63
3.2 樣本座標與樣本支架座標之關聯性 65
3.3 樣本量測系統設置 67
3.3.1 一維複式光柵週期結構共平面量測 68
3.3.2 二維複式光柵週期結構非共平面量測 70
第四章 結果與討論 75
4.1 一維複式光柵週期結構反射繞射效率 75
4.1.1 正向入射 75
4.1.2 斜向入射 80
4.2 二維複式光柵週期結構反射繞射效率 83
4.2.1 正向入射 83
4.2.2 斜向入射 89
第五章 結論與未來工作 94
5.1 結論 94
5.2 未來工作 96
參考文獻 98

1.I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass, Opt Lett 36, 3882-3884 (2011).
2.I. Yamada, K. Fukumi, J. Nishii, and M. Saito, Infrared wire-grid polarizer with Y2O3 ceramic substrate, Opt Lett 35, 3111-3113 (2010).
3.I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, Terahertz wire-grid polarizers with micrometer-pitch Al gratings, Opt Lett 34, 274-276 (2009).
4.I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, Transmittance enhancement of a wire-grid polarizer by antireflection coating, Appl Optics 48, 316-320 (2009).
5.I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, Mid-infrared wire-grid polarizer with silicides, Opt Lett 33, 258-260 (2008).
6.I. Yamada, J. Nishii, and M. Saito, Modeling, fabrication, and characterization of tungsten silicide wire-grid polarizer in infrared region, Appl Optics 47, 4735-4738 (2008).
7.H. H. Lin, C. H. Lee, and M. H. Lu, Dye-less color filter fabricated by roll-to-roll imprinting for liquid crystal display applications, Opt Express 17, 12397-12406 (2009).
8.Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, Color filter incorporating a subwavelength patterned grating in poly silicon, Opt Express 16, 2374-2380 (2008).
9.H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, Color filter based on a subwavelength patterned metal grating, Opt Express 15, 15457-15463 (2007).
10.Y. Kanamori, M. Shimono, and K. Hane, Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates, Ieee Photonic Tech L 18, 2126-2128 (2006).
11.Y. M. Song, J. S. Yu, and Y. T. Lee, Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement, Opt Lett 35, 276-278 (2010).
12.R. Dewan, and D. Knipp, Light trapping in thin-film silicon solar cells with integrated diffraction grating, J Appl Phys 106 (2009).
13.K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, and A. Mascarenhas, Direct growth of highly mismatched type IIZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications, Adv Mater 20, 3248-+ (2008).
14.J. G. Mutitu, S. Y. Shi, C. H. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, Thin film silicon solar cell design based on photonic crystal and diffractive grating structures, Opt Express 16, 15238-15248 (2008).
15.M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, Diffraction gratings and buried nano-electrodes - architectures for organic solar cells, Thin Solid Films 451, 619-623 (2004).
16.Y.-B. Chen, and Z. M. Zhang, Design of tungsten complex gratings for thermophotovoltaic radiators, Opt Commun 269, 411-417 (2007).
17.H. Sai, and H. Yugami, Thermophotovoltaic generation with selective radiators based on tungsten surface gratings, Appl Phys Lett 85, 3399-3401 (2004).
18.H. Sai, H. Yugami, Y. Kanamori, and K. Hane, Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion, Sol Energ Mat Sol C 79, 35-49 (2003).
19.H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane, Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region, J Opt Soc Am A 18, 1471-1476 (2001).
20.D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, Demonstration of polarization-independent resonant subwavelength grating filter arrays, Opt Lett 35, 3201-3203 (2010).
21.W. G. Jang, T. W. Beom, H. Cui, J. R. Park, S. J. Hwang, Y. J. Lim, and S. H. Lee, Reduction of viewing-angle dependent color shift in a reflective type cholesteric liquid crystal color filter, Appl Phys Express 1 (2008).
22.D. Noda, M. Tanaka, K. Shimada, and T. Hattori, Fabrication of diffraction grating with high aspect ratio using X-ray lithography technique for X-ray phase imaging, Jpn J Appl Phys 1 46, 849-851 (2007).
23.T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, Multiprimary color display for liquid crystal display projectors using diffraction grating, Opt Eng 38, 1883-1888 (1999).
24.M. Wurm, F. Pilarski, and B. Bodermann, A new flexible scatterometer for critical dimension metrology, Review of Scientific Instruments 81 (2010).
25.Y.-B. Chen, Q. Z. Zhu, T. L. Wright, W. P. King, and Z. M. Zhang, Bidirectional resection measurements of periodically microstructured silicon surfaces, Int J Thermophys 25, 1235-1252 (2004).
26.C. J. Raymond, M. R. Murnane, S. L. Prins, S. Sohail, H. Naqvi, J. R. McNeil, and J. W. Hosch, Multiparameter grating metrology using optical scatterometry, J Vac Sci Technol B 15, 361-368 (1997).
27.M. Lequime, M. Zerrad, C. Deumie, and C. Amra, A goniometric light scattering instrument with high-resolution imaging, Opt Commun 282, 1265-1273 (2009).
28.C. Deumie, H. Giovannini, and C. Amra, Ellipsometry of light scattering from multilayer coatings, Appl Optics 35, 5600-5608 (1996).
29.C. Amra, Light-Scattering from Multilayer Optics .1. Tools of Investigation, J Opt Soc Am A 11, 197-210 (1994).
30.C. Amra, Light-Scattering from Multilayer Optics .2. Application to Experiment, J Opt Soc Am A 11, 211-226 (1994).
31.H. J. Lee, and Z. M. Zhang, Measurement and modeling of the bidirectional reflectance of SiO2 coated Si surfaces, Int J Thermophys 27, 820-839 (2006).
32.J. E. Proctor, and P. Y. Barnes, NIST high accuracy reference reflectometer-spectrophotometer, J Res Natl Inst Stan 101, 619-627 (1996).
33.S. Anderson, S. M. Pompea, D. F. Shepard, and R. Castonguay, Performance of Fully Automated Scatterometer for BRDF and BTDF Measurements at Visible and Infrared Wavelengths, Proc Soc Photo-Opt Instrum Eng 967, 159-170 (1988).
34.Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces, Review of Scientific Instruments 74, 4885-4892 (2003).
35.P. Y. Barnes, E. A. Early, and A. C. Parr, Spectral reflectance, NIST Spec Publ 250-48 (1998).
36.C. Asmail, Bidirectional Scattering Distribution Function (Bsdf) - a Systematized Bibliography, J Res Natl Inst Stan 96, 215-223 (1991).
37.X. F. Feng, J. R. Schott, and T. Gallagher, Comparison of Methods for Generation of Absolute Reflectance-Factor Values for Bidirectional Reflectance-Distribution Function Studies, Appl Optics 32, 1234-1242 (1993).
38.S. Roy, S. Y. Bang, M. F. Modest, and V. S. Stubican, Measurement of Spectral, Directional Reflectivities of Solids at High-Temperatures between 9 and 11 Mu-M, Appl Optics 32, 3550-3558 (1993).
39.R. B. Zipin, A Preliminary Investigation of Bidirectional Spectral Reflectance of V-Grooved Surfaces, Appl Optics 5, 1954-& (1966).
40.B. L. Drolen, Bidirectional Reflectance and Secularity of Twelve Spacecraft Thermal Control Materials, J Thermophys Heat Trans 6, 672-679 (1992).
41.J. R. Zaworski, J. R. Welty, and M. K. Drost, Measurement and use of bi-directional reflectance, Int J Heat Mass Tran 39, 1149-1156 (1996).
42.D. R. White, P. Saunders, S. J. Bonsey, J. van de Ven, and H. Edgar, Reflectometer for measuring the bidirectional reflectance of rough surfaces, Appl Optics 37, 3450-3454 (1998).
43.J. F. Murraycoleman, and A. M. Smith, The Automated Measurement of Brdfs and Their Application to Luminaire Modeling, J Illum Eng Soc 19, 87-99 (1990).
44.T. A. Germer, and C. C. Asmail, Goniometric optical scatter instrument for out-of-plane ellipsometry measurements, Review of Scientific Instruments 70, 3688-3695 (1999).
45.X. J. Wang, A. M. Haider, J. L. Abell, Y. P. Zhao, and Z. M. Zhang, Anisotropic Diffraction from Inclined Silver Nanorod Arrays on Grating Templates, Nanosc Microsc Therm 16, 18-36 (2012).
46.Z. M. Zhang, Nano/microscale heat transfer (McGraw-Hill Professional ; London : McGraw-Hill [distributor], New York, 2007).
47.E. Hecht, Optics (Addison-Wesley, San Francisco ; London, 2002).
48.P. Beckmann, and A. Spizzichino, The scattering of electromagnetic waves from rough surfaces (Artech House, Norwood, Mass., 1987).
49.M. C. Hutley, Diffraction gratings (Academic Press, London, 1982).
50.E. G. Loewen, and E. Popov, Diffraction gratings and applications (M. Dekker, New York, 1997).
51.M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings, J Opt Soc Am A 12, 1068-1076 (1995).
52.K. Yokomori, Dielectric Surface-Relief Gratings with High Diffraction Efficiency, Appl Optics 23, 2303-2310 (1984).
53.Y.-B. Chen, B. J. Lee, and Z. M. Zhang, Infrared radiative properties of submicron metallic slit arrays, J Heat Trans-T Asme 130 (2008).
54.Y.-B. Chen, and M.-J. Huang, Infrared reflectance from a compound grating and its alternative componential gratings, J Opt Soc Am B 27, 2078-2086 (2010).
55.Huber Diffraction and Positioning Equipment, Huber X-Ray Diffraction Equipment, (Huber Diffraction and Positioning Equipment, 1979), http://www.xhuber.de/en/Products/Positioning_Devices/Circle_Positioning/1_Circle_Goniometer/1Kreiser.rsys, Accessed Jul, 2011.
56.OSI Optoelectronics, PIN-10DP Datasheet -- OSI Optoelectronics -- Photovoltaic Series -- GlobalSpec.com, (OSI Optoelectronics 2006), http://datasheets.globalspec.com/ds/1031/OSIOptoelectronics/EC11DBB8-B8A5-4564-B064-B66FE23D446E, Accessed Jul, 2011.
57.S. Peng, and G. M. Morris, Efficient Implementation of Rigorous Coupled-Wave Analysis for Surface-Relief Gratings, J Opt Soc Am A 12, 1087-1096 (1995).
58.Signal Recovery, 7265, (Signal Recovery, 2001), http://www.signalrecovery.com/Our-Products/Lock-in-Amplifiers/7265.aspx, Accessed Jul, 2011.
59.E. D. Palik, Handbook of optical constants of solids (Academic Press, Orlando, 1985).
60.X. Mellhaoui, R. Dussart, T. Tillocher, P. Lefaucheux, P. Ranson, M. Boufnichel, and L. J. Overzet, SiOxFy passivation layer in silicon cryoetching, J Appl Phys 98 (2005).
61.K. Fu, Y.-B. Chen, P. F. Hsu, Z. M. M. Zhang, and P. J. Timans, Device scaling effect on the spectral-directional absorptance of wafer's front side, Int J Heat Mass Tran 51, 4911-4925 (2008).
62.Y.-B. Chen, Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications, Opt Express 17, 3130-3140 (2009).
63.C.-J. Chen, J.-S. Chen, and Y.-B. Chen, Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton, J Opt Soc Am B 28, 1798-1806 (2011).
64.J. B. Yang, and Z. P. Zhou, Double-structure, bidirectional and polarization-independent subwavelength grating beam splitter, Opt Commun 285, 1494-1500 (2012).
65.Y.-B. Chen, and K.-H. Tan, The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters, Int J Heat Mass Tran 53, 5542-5551 (2010).
66.H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, Optical transmission through double-layer metallic subwavelength slit arrays, Opt Lett 31, 516-518 (2006).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top