跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王建智
研究生(外文):Chen-ChiWang
論文名稱:含邊緣裂紋樑受混合模式彎矩之破壞力學分析
論文名稱(外文):Fracture mechanics analysis of edge-cracked beam under mixed-mode bending
指導教授:屈子正
指導教授(外文):Tz-Cheng Chiu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:88
中文關鍵詞:應變能釋放率相位角混合模式彎曲界面疲勞
外文關鍵詞:strain energy release ratephase anglemixed-mode bendinginterfacefatigue
相關次數:
  • 被引用被引用:6
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
為使結構重量變輕、強度變強,現代結構經常會使用複合材料。而在使用過程中,結構受到環境因素的影響,例如溫度、濕度、機械應力產生裂紋。為了探討混合模式作用下含邊緣裂紋樑之破壞力學參數,本文使用Euler-Bernouli樑理論求得模式一(mode I)及模式二(mode II)的撓度以及使用Airy應力函數理論修正裂紋尖端附近的位移,利用破壞力學理論計算出模式一及模式二的應變能釋放率(energy release rate),然後使用疊加法得到混合模式的總應變能釋放率,並使用有限元素法驗證所得到解析解。為了描述結構在使用時材料界面上的疲勞破壞成長行為,本文設計一混合模式界面裂紋疲勞成長實驗方法。此方法隨著疲勞裂紋長度的增加,改變混合模式施力比以固定混合模式相位角,由此可以建立在特定相位角下界面裂紋疲勞成長的模型。
Composite structures consists of dissimilar materials are regularly used in modern engineering applications to reduce weight and, at the same time, increase strength. Under the complex mixed-moded loadings and environment effects, cracks are likely to initiate and grow in these structures. It is important to develop a model for the crack growth such that the service life of the structure can be estimated. In this study the fracture mechanics problem of an edge-cracked beam subjected to mixed-mode loading is investigated. The mode-I and -II compliances of the cracked beam are obtained by using the Euler-Bernouli beam on elastic foundation theory. Airy stress function theory is also applied to consider the shear effect and to improve the compliance estimation. The compliances are then used to calculate the energy release rates for the mode-I and -II problems. The solution of the mixed-mode problem is obtained by superpositioning the mode-I and -II solutions. The analytical solution of the problem is validated by numerical finite element result.
With the solution of the mixed-mode fracture problem, an experimental setup is developed for studying the fatigue growth behavior of an interface crack under mixed-mode loading condition. By continuously varying the loading ratio of the edge-cracked beam as crack length increases, a constant phase angle can be achieved during crack growth. The subcritical fatigue growth model under specific mode mixity for the interface crack of interest can be obtained by following the proposed procedure.


目錄
摘要............................................................................................................. I
英文摘要.................................................................................................... II
誌謝.......................................................................................................... III
目錄.......................................................................................................... IV
表目錄.........................................................................................................VII
圖目錄................................................................................................... VIII
符號說明........................................................................................................X
第一章 緒論............................................................................................. 1
1.1 前言..................................................................................................................................... 1
1.2 文獻回顧.................................................................................................................. 3
1.3 研究目的與方法...................................................................................................... 5
1.4 論文架構.................................................................................................................. 6
第二章 理論背景....................................................................................... 7
2.1 破壞力學參數.......................................................................................................... 7
2.2 混合模式彎矩問題.................................................................................................. 8
2.3 模式一問題……………………............................................................................ 11
2.4 模式二問題……………………............................................................................ 25
2.5 混合模式問題之破壞力學數................................................................................ 30
2.6 界面破壞力學理論…………………………........................................................ 31
第三章 驗証與比較............................................................................... 37
3.1 模式一結果與比較................................................................................................ 37
3.2 模式一界面裂紋結果與比較................................................................................ 40
3.3 模式二結果與比較................................................................................................ 44
3.4 模式二界面裂紋結果與比較................................................................................ 48
3.5 混合模式界面裂紋結果與比較.............................................................................52
第四章 疲勞破壞…………..................................................................... 56
4.1 疲勞裂紋成長……………………........................................................................ 56
4.2 疲勞破壞……….................................................................................................... 60
4.3 界面上的相位角.................................................................................................... 64
第五章 結論............................................................................................. 72
5.1 結論……................................................................................................................ 72
參考文獻....................................................................................................................... 74
附錄............................................................................................................................ 81

[1]X. Wu, K. W. Paik and S. N. Bhandarkar, “To cut or not to cut: a thermomechanical stress analysis of polyimide thin-film on ceramic structures, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 18, pp. 150-153, 1995.
[2]J. L. Beuth and S. H. Narayan, “Residual stress-driven delamination in deposited multi-layers, International Journal of Solids and Structures, Vol. 33, pp. 65-78, 1996.
[3]X. Liu, V. K. Sooklal, M. A. Verges and M. C. Larson, “Experimental study and life prediction on high cycle vibration fatigue in BGA packages, Microelectronics Reliability, Vol. 46, pp. 1128-1138, 2006.
[4]K. M. Chen, K. K. Ho and D. S. Jiang, “Impact of lead free solder materials on board level reliability for low-K WLCSP, Proceedings of the International Microsystems, Packaging, Assembly and Circuits Technology Conference, IMPACT-2007, Taipei, Taiwan, pp. 243-245, 2007.
[5]M. W. Lane, R. H. Dauskardt, Q. Ma H. Fujimoto and N. Krishna, Subcritical debonding of multilayer interconnect structures: Temperature and humidity effects, Materials Research Society Symposium Proceedings, Vol. 563, pp. 251-256, 1999.
[6]J. G. Williams, “End corrections for orthotropic DCB specimens, Composites Science and Technology, Vol. 35, pp. 367-376, 1989.
[7]朱書偉,聚醯亞胺與氮化矽薄膜介面之疲勞裂紋成長行為,國立成功大學,碩士論文,2010
[8]R. J. Sanford, Principles of Fracture Mechanics, Prentice Hall, Upper Saddle River, NJ, 2003.
[9]L. A. Carlsson, J. W. Gillespie JR. and R .B. Pipes, “On the analysis and design of the end notched flexure specimen for mode II testing, Journal of Composite Materials, Vol.20, pp. 594-604, 1986.
[10]Y. Wang and J. G. Williams, “Corrections for Mode II fracture toughness specimens of composites materials, Composites Science and Technology, Vol. 43, pp. 251-256, 1992.
[11]Carlos R. Corleto and Harry A. Hogan, “Energy release rates for the ENF specimen using a beam on elastic foundation, Journal of Composite Materials, Vol. 29, pp.1420-1436, 1995.
[12]J. Zhou and T. He, “On the analysis of the end-notched flexure specimen for measuring mode II fracture toughness of composite materials, Composites Science and Technology, Vol. 50, pp. 209-213, 1994.
[13]James R. Reeder and John R. crews Jr., “Mixed-mode bending method for delamination testing , AIAA Journal, Vol. 28, pp. 1270-1276, 1990.
[14]Z. Suo and J. W. Hutchinson, “Interface crack between two elastic layers, International Journal of Fracture, Vol. 43, pp. 1-18, 1990.
[15]G. Fernlund and J. K. Spelt, Failure load prediction of structural adhesive joints , Int. J. Adhesion and Adhesives, Vol. 11, NO.4, pp. 213-220, 1991.
[16]Srinivas Bhashyam and Barry D. Davidon, “Evaluation of data reduction methods for the mixed mode bending test, AIAA Journal , Vol. 35, NO.3, pp. 547-552, 1997.
[17]Z. Liu, R. F. Gibson and G. M. Newaz, “Improved Analytical Models for Mixed-Mode Bended Joints, The Journal of Adhesion, Vol. 78, pp. 245-268, 2002.
[18]S. H. Yoon and C. S. Hong, “Modified end notched flexure specimen for mixed mode interlaminar fracture in laminated composites , International Journal of Fracture, Vol. 43, pp. R3-R9, 1990.
[19]F. Xiao, C.-Y. Hui, E. J. Kramer, “Analysis of a mixed mode fracture specimen : the asymmetric double cantilever beam, Journal of Materials Science, Vol. 28, pp. 5620-5629, 1993.
[20]G. Fernlund and J. K. Spelt, “Mixed-mode fracture characterization of adhesive joint, Composites Science and Technology, Vol. 50, pp. 441-449, 1993.
[21]M. Sander, H. A. Richard, “Experimental and numerical investigations on the influence of the loading direction on fatigure crack growth, International Journal of Fatigue, Vol. 28, pp. 583-591, 2006.
[22]G. Schlotting, H. Pape, B. Wunderle and L. J. Ernst, “Induced delamination of silicon-molding compound interfaces, Proceedings of the 10th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2009, Delft, Netherlands, pp. 1-4, 2009.
[23]ASTM D6671-06, “Standard test method for mixed mode I- mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites, West Conshohocken, pp. 1-13, 2011.
[24]M. F. Kanninen, “An augmented double beam model for studying crack propagation and arrest, International Journal of Fracture, Vol. 9, pp. 83-92, 1973.
[25]X. Dai, M. V. Brillhart and P. S. Ho, “Adhesion Measurement for Electronic Packaging Applications Using Double Cantilever Beam Method, IEEE Transactions on Components and Packaging Technology, Vol. 23, pp. 101-116, 2000.
[26]R. J. Sanford, “Principles of Fracture Mechanics, Prentice Hall, Upper Saddle River, NJ, 2003.
[27]A. A. Griffith, “The phenomena of rupture and flow in solids, Philosophical Transaction, Series A, Vol. 221, pp. 163-198, 1920.
[28]G. R. Irwin and J. A. Kies, “Critical Energy Rate Analysis of Fracture Strength, Welding Journal Research Supplement, Vol. 33, pp. 193-198, 1954.
[29]J. R. Rice, Z. Suo and J. S. Wang, “Mechanics and thermodynamics of brittle interfacial failurein bimaterial system, In: Ruhle M, Evans AG, Ashby MF, Hirth JP, editors. Metal-Ceramics Interfaces, New York: Pergamon, pp. 269-294, 1990.
[30]J. Dundurs, “Edge bonded dissimilar orthogonal elastic wedges, Journal of Applied Mechanics, Vol. 36, pp. 650-652, 1969.
[31]J. R. Rice, “Elastic fracture mechanics concepts for interfacial cracks, Journal of Applied Mechanics, Transactions ASME, Vol. 55, pp. 98-103, 1988.
[32]J. W. Hutchinson and Z. Suo, “Mixed mode cracking in layered materials, In: J. W. Hutchinson, W.Y. Theodore, editors. Advances in applied mechanics, New York: Academic Press, pp. 63-191, 1992.
[33]K. S. Venkatesha, B. Dattaguru and T. S. Ramamurthy, “Finite element analysis of an interface crack with large crack-tip contact zones, Engineering Fracture Mechanics, Vol. 54, pp. 847-860, 1996.
[34]G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, Vol. 24, pp. 361-364, 1957.
[35]W. T. Chow and S. N. Atluri, “Finite element calculation of stress intensity factors for interfacial crack using virtual crack closure integral, Computational Mechanics, Vol. 16, pp. 417-425, 1995.
[36]G. De Roeck and M. M. Abdel Wahab, “Strain energy release rate formulae for 3D finite element, Engineering Fracture Mechanics, Vol. 50, pp. 569-580, 1995.
[37]L. A. Carlsson, J. W. Gillepie and R. B. Pipes, “On the Analysis and Design of the End Notched Flexsure (ENF) Specimen for Mode II Testing, Journal of Composite Materials, Vol. 20, pp. 594-604, 1986.
[38]P. C. Paris and F. Erdogan, “A critical analysis of crack propagation laws, Journal of Basic Engineering Transactions ASME, Vol. 85, pp. 528-534, 1963.
[39]J. K. Shang, “Interface fatigue crack growth in layered materials, Proceedings of the Fatigue Conference, pp. 43-54, 1996.
[40]A. Pirondi and G. Nicoletto, “Fatigue crack growth in bonded DCB specimen, Engineering Fracture Mechanics, Vol.71, pp. 859-871, 2004.
[41]W. T. Chow and S. N. Atluri, “Finite element calculation of stress intensity factors for interface crack using virtual crack closure integral, Comput. Mech., Vol. 16, pp. 417-425, 1995.
[42]M. F. Kanninen, “A dynamic analysis of unstable crack propagation and arrest in the DCB test specimen, International Journal of Fracture, pp. 415-430, 1973.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top