跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/05 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方翊翔
研究生(外文):I-HsiangFang
論文名稱:改變封裝層與背板材料對多晶矽太陽能模組性能之實驗與數值分析
論文名稱(外文):Experimental and Numerical Analysis of the Performance of Multi-crystalline Silicon Photovoltaic Module by Changing Materials of Ethylene Vinyl Acetate and Back Sheet
指導教授:溫昌達
指導教授(外文):Chang-Da Wen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:128
中文關鍵詞:多晶矽太陽能模組標準測試條件標準工作電池溫度表面放射率熱傳導係數轉換效率相對輸出功率
外文關鍵詞:Crystal silicon PV moduleStandard test conditionNormal operating cell temperatureEmissivityConductivityConversion efficiencyRelative power
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
根據先前學者研究指出,多晶矽太陽能模組之運作溫度平均每高於參考溫度(25℃)一度,其光電轉換效率將下降約0.4 - 0.5%,故本研究旨在藉改善晶矽太陽能模組背板及背層封裝層(Ethylene Vinyl Acetate, EVA)之材料,用以降低晶矽太陽能模組之實際運作溫度,進而提升其輸出功率。
本研究以數值模擬及實驗之方式,在低輻照度、標準操作電池溫度(Nominal Operating Cell Temperature, NOCT)與標準測試條件(Standard Test Condition, STC)三種照度下,得到太陽能模組之(1)背板中心溫度與各層溫度、(2)輸出功率、電壓與電流、(3)轉換效率與相對輸出功率、(4)背板熱輻射功效、(5)熱傳機制所佔比重與(6)因子貢獻度分析,續以全尺寸實驗驗證前述結果以期將本研究之發現應用於業界。
本研究之主要控制變因為背層封裝層之材料與背板之熱傳導係數及表面放射率,透過研究可發現太陽能模組之溫度與輸出功率隨照度增加而上升,但轉換效率卻隨模組運行溫度上升而下降。高放射率能增益背板藉由輻射散逸之熱量約2倍,而高熱傳導係數能將集中於電池之溫度擴散至模組邊緣以降低電池溫度,再者背層EVA改質能增加進入電池之光量,因此透過此三種機制可針對電池層之進光量與模組運行溫度進行改善,以提高其相對輸出功率與性能表現。
最後,穩態之主實驗與暫態之全尺寸實驗在增益之量值上雖有落差,但在定性分析上之趨勢完全一致,故若能針對本研究所提出之因子間交集效應進行改善,複合因子之效果將能大幅提升以偏向單一因子之線性疊加效果,進而達到最大之模組相對輸出功率。
According to former studies, the elevation of the PV temperature reduces solar to electrical energy conversion efficiency by 0.4 - 0.5 (%.K-1) for crystal silicon PV when it rises above the characteristic power conversion temperature of 25℃. Therefore, the performance of module is improved by changing materials of ethylene vinyl acetate and back sheet to decrease the operating temperature of module in this study.
Under (1) low irradiance; (2) nominal operating cell temperature (NOCT) and (3) standard test condition (STC), numerical and experimental methods are used to get (1) the central back sheet’s temperature and each layer’s temperature; (2) output power, current and voltage; (3) conversion efficiency and relative power; (4) the effect of back sheet’s radiation; (5) the percentage of each thermal mechanism; (6) contributions of factors. Then, the above results will be verified through the full-scale experiments. Findings from this research will be applied in industry.
In the research, the main control factors are the material of rear EVA and the back sheet’s conductivity and emissivity. The results show that the module’s temperature and output power increase when the irradiance elevates, but the conversion efficiency of module decreases. The high emissivity of module’s back sheet can double dissipate the radiative heat from the back sheet. The concentrative heat of cell can be spread into the frame by the high conductivity of back sheet. The white rear EVA can increase the amount of incident light into cell. Therefore, these three mechanisms can improve operating temperature and the amount of incident light into cell and then elevate the relative power and performance of the module.
Finally, although the gain value of module’s performance has a gap between the steady-state in-lab experiment and the transient full-scale experiment, their trends are the same. Consequently, if the intersections among factors can be improved, the compound effect can tend toward the linear superposition of each factor and then the maximum relative power can be achieved.
摘要...i
Abstract...iii
Acknowledgments...v
Contents...vii
List of Tables...xi
List of Figures...xii
Nomenclature...xvi
Chapter 1. Introduction...1
1-1 Research Background...1
1-2 Literature Review...2
1-3 Research Motive and Goal...21
1-4 Research Construction...23
Chapter 2. Fundamental Principles...25
2-1 Principles of Power Generation...25
2-1.1 Photoelectric Effect...26
2-1.2 Dember effect...30
2-1.3 Photovoltaic Effect...31
2-2 Governing Equations...33
2-2.1 PV Electrical Model...33
2-2.2 PV Heat Transfer Model...37
2-2.2.1 Boundary Conditions...41
Chapter 3. Numerical Methods...47
3-1 One-dimensional Numerical Method...47
3-1.1 One-dimensional Physical Model...47
3-1.2 Governing Equations of One-dimensional Numerical Method...47
3-1.3 Thermal Resistance Circuits...51
3-1.4 Program Procedures...54
3-2 Three-dimensional Numerical Method...54
3-2.1 Three-dimensional Physical Model...55
3-2.2 Governing Equations of Three-dimensional Numerical Method...55
3-2.3 Program Procedures...55
Chapter 4. Experiment...56
4-1 Experimental Structure...56
4-1.1 Light Source...56
4-1.2 Data Acquisition System...58
4-1.3 Heat Flux Meter and Temperature Control System...58
4-1.4 Test Module...59
4-2 Experimental Procedures...63
4-2.1 Pre-experiments...63
4-2.2 In-lab Experiment...64
Chapter 5. Results and Discussion...66
5-1 Correlation of Irradiance and Distance...66
5-2 The Independent Test of Spatial Grid...68
5-3 Temperature of Module...68
5-3.1 Comparison of Experimental Data and Numerical Results...71
5-3.2 Simulated Central Temperature of Each Layer of Module...73
5-3.3 Simulated Planar Temperature Distribution...76
5-4 Output Power of Module...78
5-5 Current and Voltage of Module...78
5-6 Conversion Efficiency and Relative Power of Module...82
5-7 Effect of Back Sheet’s Radiation and Penetration...84
5-8 Proportion of Back Sheet’s Convection and Radiation...89
5-9 Analysis of Factors’ Contributions...89
5-10 Experimental Data of Full-scale Modules...93
5-10.1 Central Temperature of Each Full-scale Module’s Back Sheet...93
5-10.2 Output Power of Each Full-scale Module...95
5-10.3 Conversion Efficiency of Each Full-scale Module...101
5-10.4 Relative Power of Each Full-scale Module...106
5-10.5 Accumulative Output Power of Each Full-scale Module...110
Chapter 6. Conclusions and Future Work...113
6-1 Conclusions...113
6-2 Future Work...114
References...116
Appendix...119
Appendix A...120
Appendix B...127
Vita...128

1. A. Ramos-Pérez, F. Serrano-Casares, E. A. Rodríguez-García, “Theranl and Electrical Model of a Photovoltaic Module, 24th European Photovoltaic Solar Energy Conference, pp. 3343-3348, September, 2009.
2. Ahmad Najjaran, Ali R. Tahavvor, Abdolkarim Najjaran, Mohammad A. Ahmadfard, “Numerical Simulation of Radiation Heat Transfer of the Human Body for Determining the Radiation Heat Transfer Coefficient, IMECE, November, 2011.
3. CEI/ICE, “Crystalline Silicon Terrestrial Photovoltaic (PV) Modules: Design Qualification and Type Approval, CEI/IEC 61215, 6th ed., pp. 49-52, 2005.
4. Ching-Chieh Lin, Chun-Hsien Chou, Mei-Hsiu Liu, Tsung-Ming Lee, “Innovative Photovoltaic Module with 8.87 % More Power Output Using Discrete Substrate and Phase Change Material, 26th European Photovoltaic Solar Energy Conference and Exhibition, pp. 3137-3139, 2011.
5. D. W. Cunningham, D. Amin, J. Miller, A.M. Nguyen, A. Parr, J. H. Wohlgemuth, Z. Xia, “Key Aspects of Module Design That Influence Energy Generation, 24th European Photovoltaic Solar Energy Conference, pp.3217-3221, September, 2009.
6. E. Skoplaki, J.A. Palyvos, “On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/power Correlations, Solar Energy 83, pp. 614-624, 2009.
7. Ewa Radziemska, “Performance Analysis of a Photovoltaic-Thermal Integrated System, International Kournal of Photoenergy, 2009.
8. G.N. Tiwari, R.K. Mishra, S.C. Solanki, “Photovoltaic Modules and Their Applications: A Review on Thermal Modelling, Applied Energy, 2011.
9. J. G. Ingersoll, “Simplified Calculation of Solar Cell Temperatures in Terrestrial Photovoltaic Arrays, Journal of Solar Energy Engineering, Vol. 108, pp. 95-101, May, 1986.
10. Keith R. McIntosh, James N. Cotsell, Jeff S. Cumpston, Ann W. Norris, Nick E. Powell, and Barry M. Ketola, “An Optical Comparison of Silicone and Eva Encapsulants for Conventional Silicon PV Modules: A Ray-tracing Study, Dow Corning Corporation, November, 2009.
11. Monegon Report No. M102, “Selecting Solar Photovotaic Power Systems (Seminar Text), Vol. I, Monegon, Ltd., Gaithersburg, Maryland, 1980.
12. Ming Jun Huang, “The Effect of Using Two PCMs on the Thermal Regulation Performance of BIPV Systems, Solar Energy Materials & Solar Cells, 2010.
13. Mehmet Emin Meral, Furkan Diçner, “A Review of the Factors Affecting Operation and Efficiency of Photovoltaic Based Electricity Generation Systems, Renewable and Sustainable Energy Reviews 15, pp. 2176-2184,2011.
14. PVCOOL Ltd., “PVCOOL-SP95, 2011.
15. Stenfan Krauter, Paul Grunow, “Wafer, Cell and Module Quality Requirements, Photovoltaics International Journal, pp. 59-65, August, 2008.
16. Stefan Krauter, Alexander Preiss, “Comparison of Module Temperature Measurement Methods, 2010.
17. Andrea Compagno著、施植明譯,「智慧型玻璃立面」,台北市:田園城市文化事業,1998。
18. 畢家興,「以珊瑚蛋白及光譜轉換分子改善太陽能電池效率之研究」,台灣2007年國際科學展覽會,頁34-35,2007。
19. 張建榮、徐向東、劉文燕,「混凝土表面太陽輻射吸收係數測試研究」,建築科學,第22卷第1期,頁42-45,2006。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top