跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林琬儒
研究生(外文):Wan-JuLin
論文名稱:彈性結構的有限元素破壞分析與微系統工程之應用
論文名稱(外文):Finite Element Fracture Analysis of Elastic Structures and Its Applications in Microsystem Engineering
指導教授:陳國聲
指導教授(外文):Kuo-Shen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:160
中文關鍵詞:破壞力學有限元素分析DCB testBulge testBlister test雷射玻璃劈裂
外文關鍵詞:Fracture mechanicsFinite Element AnalysisDCB testBulge testBlister testLaser glass peeling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
隨著元件逐漸的縮小,薄膜的應用也逐漸廣泛,在工程領域中薄膜材料的機械性質也越來越得到重視。而正確的材料性質對工程上的應用也越來越重要。雙懸臂樑結構常用於測量mode I下的界面破壞韌性,Bulge test也常被用來量測材料的楊氏模數、殘留應力與蒲松比。Blister test是另一種常用來測試薄膜界面破壞韌性的方法。雷射玻璃劈裂是破壞行為在工程上的應用。本文主要以有限元素分析驗證公式的適用性,在雙懸臂樑結構與Blister test我們使用有限元素破壞分析中的延伸有限元素法(XFEM),探討楊氏模數、殘留應力、薄膜厚度對模擬結果的影響。在Bulge test我們以有限元素破壞分析中的虛擬裂紋技術(VCCT)探討楊氏模數、殘留應力、薄膜厚度對模擬結果的影響。在雷射玻璃劈裂模擬中,討論雷射光功率與光源直徑對玻璃表面溫度與應力的影響。由模擬結果發現,在雙懸臂樑結構中,當裂縫長度與樑的寬度小於200時解析公式並不適用,須以修正因子進行修正。而在Bulge test和Blister test中發現當材料剛性相對大時,解析公式並不適用。在雷射玻璃劈裂模擬結果中,發現當功率越大或直徑越小時,表面溫度與應力較大,而能量釋放率也較大。
Materials for microelectromechanical systems (MEMS) and integrated circuits (IC) structures are usually brittle and their properties characterization is crucial for structural reliability concern. Furthermore, by utilizing proper crack propagation, it is possible to design efficient fabrication routes for device manufacturing. This thesis investigates various topics related to fracture mechanics for MEMS and IC structures reliability assessment through finite element method (FEM). First, the assumptions and applicability of the conversion formula for double cantilever beams commonly used as fracture toughness is examined using extended finite element method (XFEM). The results indicate that the difference between the analytical and simulation results could be significant for specimens if the aspect ratio is less than 30 and the corresponding modification factor is also obtained for engineering applications. Second, the applicability of bulge/blister tests are also examined using FEM fracture analysis with virtual crack closure technique (VCCT). The results indicated that for thin film with higher stiffness, the Young’s modulus, residual stress, and interfacial toughness extracted using traditional bulge/blister formulas could contain considerable errors. Finally, the thermal stress and fracture mechanics analyses for laser glass peeling process are also conducted and the effect of laser spot size, energy density, and cutting speed are also investigated. The simulated temperature profile agrees with that observed in experiment qualitatively. In addition, with a reasonable initial flaw size, the strain energy release rate at crack tip could exceed the critical value based on the experimental setting. In summary, the above simulation works could provide engineering insights to guide the test specimen design for MEMS and IC material testing for reliability evaluation and for subsequent optimizing the laser peeling process.
摘要...........................................I
Abstract.......................................II
誌謝...........................................III
目錄........................................... V
表目錄......................................... IX
圖目錄..........................................X
符號說明.........................................XVII
第一章 緒論........................................... 1
1.1 前言........................................... 1
1.2 文獻回顧....................................... 4
1.3 研究動機與目的..................................7
1.4 全文架構....................................... 10
第二章 研究背景介紹.....................................12
2.1. 本章介紹....................................... 12
2.2. 破壞現象....................................... 13
2.3. 結構破壞力學理論................................16
2.4. 有限元素分析....................................20
2.5. 破壞韌性與能量釋放率............................26
2.6. Bulge test和Blister test........................30
2.7. 雷射切割....................................... 37
2.8. 本章結論....................................... 38
第三章 雙懸臂樑結構有限元素分析.........................39
3.1 本章介紹....................................... 39
3.2 雙懸臂樑的有限元素模型建立......................41
3.3 雙懸臂樑模型收斂性分析..........................44
3.4 雙懸臂樑的適應範圍探討及其修正..................47
3.5 本章結論....................................... 58
第四章Bulge test有限元素分析............................60
4.1 本章介紹....................................... 60
4.2 Bulge test......................................61
4.3 Bulge test有限元素模型建立......................66
4.4 Bulge test 與理論公式的驗證.....................74
4.5 本章結論....................................... 90
第五章 Blister test 有限元素分析.......................91
5.1 本章介紹.......................................91
5.2 Blister test簡介...............................93
5.3 Blister test有限元素模型建立...................97
5.4 Blister test 與有限元素的驗證..................99
5.5 本章結論.......................................108
第六章 雷射玻璃製程之模擬..............................110
6.1 本章介紹.......................................110
6.2 雷射玻璃劈裂的介紹.............................112
6.3 雷射劈裂的模擬分析設計.........................116
6.4 二維有限元素模型建立...........................120
6.5 三維有限元素模型建立分析.......................127
6.6 本章結論....................................... 135
第七章 研究結果與討論...................................136
7.1 全文歸納....................................... 136
7.2 雙懸臂樑解析公式修正............................138
7.3 Bulge test解析公式適用範圍......................140
7.4 Blister test破壞韌性公式適用範圍................142
7.5 雷射玻璃劈裂模擬分析............................144
7.6 本章結論....................................... 146
第八章 結論與未來展望...................................147
8.1. 本文結論....................................... 147
8.2. 本文貢獻....................................... 149
8.3. 未來展望....................................... 150
參考文獻 .......................................153
[1]吳秉欣,磁控濺鍍氮氧化矽與電漿輔助化學氣象沉積氮化矽薄膜材料機械性質檢測和力學分析及其在微系統之應用,國立成功大學機械工程學系碩士論文,2010.
[2]K. A. Lohner, Microfabricated Refractory Ceramic Structures for Micro Turbomachinery, S. M. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1999.
[3]H. Y. Zheng and T. Lee, Studies of CO2 Laser Peeling of Glass Substrates, Journal of Micromechanics and Microengineering, pp. 2093–2097, 2005.
[4]J. M. Whitney, Experimental Characterization of Delamination Fracture, in lnterlaminar Response of Composite Materials, pp.161-250, 1989.
[5]P. Davies and M. L. Benzeggagh, Interlaminar Mode-I Fracture Testing, Application of Fracture Mechanics to Composite Materials, pp.81-112, 1989.
[6]R. Olsson, Contributions to the Analysis of the DCB Specimen, The Aeronautical Research Institute of Sweden, Stockholm, 1990.
[7]C. Xu, T. Siegmund, and K. Ramani, Rate-Dependent Crack Growth in Adhesives II. Experiments and Analysis, International Journal of Adhesion and Adhesives, Vol. 23, pp.15–22, 2003.
[8]M. K. Small and W. D. Nix, Analysis of the Accuracy of the Bulge Test in Determing the Mechanical Properties of Thin Films, Journal of Material Research, Vol. 7, pp.1553-1563, 1992.
[9]J. J. Vlassak and W. D. Nix, A New Bulge Test Technique for the Determination of Young’s Modulus and Poisson’s Ratio of Thin Films, Journal of Material Research, Vol. 7, pp. 3242-3249, 1992.
[10]C. K. Huang, W. M. Lou, C. J. Tsai, T. C. Wu, and H. Y. Lin, Mechanical Properties of Polymer Thin Film Measured by the Bulge Test, Thin Solid Film, Vol. 515, pp.7222-7226, 2007.
[11]Bulge test 實驗架構, McMaster university the Faculty of Engineering.
http://mmri.mcmaster.ca/mfl/research_test_hydraulic_bulge.html
[12]H. Dannenberg, Measurment of Adhesion by a Blister Method, Journal of Applied Polymer Science , Vol. 5, pp.125-134, 1961.
[13]K. M. Liechti and Y. S. Chai, Asymmetric Shielding in Interfacial Fracture Under In-Plane Shear, Journal of Applied Mechanics,Vol. 59, pp.295-304, 1992.
[14]K. M. Liechti and Y. M. Liang, The Interfacial Fracture Characteristics of Bimaterial and Sandwich Blister Specimens, International Journal of Fracture, Vol. 55, pp. 95-114, 1992.
[15]R. M. Lumley, Controlled Separation of Brittle Materials Using a Laser, The American Ceramic Society Bulletin, Vol. 48, pp. 850-854, 1969.
[16]K. Li and P. Sheng, Plane Stress Model for Fracture of Ceramics During Laser Cutting, International Journal of Machine Tools and Manufacture, Vol. 35, pp. 1493-1506, 1995.
[17]M. Ikeda, T. Shibata, E. Makino, Y. Takahashi, A. Ono, and F. Matsumoto, Study on Laser Breaking of Glass Plate(1st Report)-Generation and Growth of Vertical Cracks by Scribing, The Japan Society for Precision Engineering, Vol. 62, pp. 413-417, 1996.
[18]S. Muralidhar, S. Pal, A. Jagota, S. R. Kale, and R. K. Mittal, A Study of Thermal Cutting of Glass, Journal of the American Ceramic Society, Vol. 82, pp. 2166-2176, 1999.
[19]C. H. Tsai and C. S. Liou, Fracture Mechanism of Laser Cutting with Controlled Fracture, Journal of Manufacturing Science and Engineering, Vol. 125, pp. 519-528, 2003.
[20]T. Elperin and G. Rudin, Controlled Fracture of Nonmetallic Thin Wafers Using a Laser Thermal Shock Method, Journal of Electronic Packaging, Vol. 126, pp. 142-147, 2004.
[21]C. H. Tsai and B. C. Lin, Laser Cutting with Controlled Fracture and Pre-Bending Applied to LCD Glass Separation, International Journal of Advanced Manufacturing Technology, Vol. 32, pp. 1155-1162, 2007.
[22]T. Uchiyama, M. Kato, and T. Yoshida, Buckling Deformation of Polymer Electrolyte Membrane and Membrane Electrode Assembly Under Humidity Cycles, Journal of Power Sources, Vol. 206, pp. 37–46, 2012.
[23]T. Y. Tsui, A. J. McKerrow, and J. Vlassak, Constraint Effects on Thin Film Channel Cracking Behavior, Journal of Material Research, Vol. 20, pp. 2266-2273, 2005.
[24]P. Davidson, A. M. Waas, and C. S. Yerramalli, Experimental Determination of Validated, Critical Interfacial Modes I and II Energy Release Rates in a Composite Sandwich Panel, Composite Structures, Vol. 94, pp. 477-483, 2012.
[25]S. Nisar, M. A. Sheikh, L. Li, and S. Safdar, The Effect of Material Thickness, Laser Power and Cutting Speed on Cut Path Deviation in High-Power Diode Laser Chip-Free Cutting of Glass, Optics and Laser Technology, Vol. 42, pp. 1022–1031, 2010.
[26]A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society of London, Vol. 221, pp. 163-198, 1921.
[27]G. R. Irwin, Analysis of Stress and Strain Near the End of Crack Traversing a Plate, Journal of Applied Mechanics, Vol. 24, pp. 361-364, 1957.
[28]G. R. Irwin, Fracture, Encyclopedia of Physicics, Berlin: Springer-Verlag, 1958.
[29]E. E. Gdoutos, Fracture Mechanics:an Introduction, Kluwer Academic Publishers, 2005.
[30]J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notched and Cracks, Journal of Applied Mechanics, Vol. 35, pp. 379-386, 1968.
[31]A. C. Garg, Delamination-A Damage Mode in Composite Structures, Engineering Fracture Mechanics, Vol. 29, pp. 557-584, 1988.
[32]V. V. Bolotin, Delaminations in Composite Structures: Its Origin, Buckling, Growth and Stability, Composites Part B: Engineering, Vol. 27, pp. 129-145, 1996.
[33]K. N. Shivakumar, P. W. Tan, and J. C. Newman, A Virtual Crack-Closure Technique for Calculating Stress Intensity Factors for Cracked Three Dimensional Bodies, International Journal of Fracture, Vol. 36, pp. R43-R50, 1988.
[34]T. K. O'Brien, Characterization of Delamination Onset and Growth in a Composite Laminate, in Damage in Composite Materials, American Society for Testing and Materials, Vol. 775. pp. 140-167, 1982.
[35]X. Chen, Y. C. Lin, X. Liu, and G. Q. Lu, Fracture Mechanics Analysis of the Effect of Substrate Flexibility on Solder Joint Reliability, Engineering Fracture Mechanics, Vol. 72, pp. 2628-2646, 2005.
[36]D. Xie and S. B. Biggers Jr, Progressive Crack Growth Analysis Using Interface Element Based on the Virtual Crack Closure Technique, Finite Elements in Analysis and Design, Vol. 42, pp. 977 – 984, 2006.
[37]M. M. Shokrieh, M. H. Rarani, and S. Rahimi, Influence of Curved Delamination Front on Toughness of Multidirectional DCB Specimens, Composite Structures, Vol. 94, pp. 1359–1365, 2012.
[38]R. M. M. Mendesa and M. M. Freitas, Failure Criteria for Mixed Mode Delamination in Glass Fibre Epoxy Composites, Composite Structures, Vol. 92, pp. 2292-2298, 2010.
[39]J. P. Berry, Determination of Fracture Surface Energies by the Cleavage Technique, Journal of Applied Physics, Vol. 34, pp. 62-68, 1963.
[40]J. J. Polaha, Effect of Interfacial Ply Orientation on the Fracture Toughness of a Laminated Graphite/Epoxy Composite, Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 1707-16, 1994.
[41]J. H. Crews Jr, K. N. Shivakumar, and I. S. Raju, Strain Energy Release Rate Distributions for Double Cantilever Beam Specimen, American Institute of Aeronautics and Astronautics Journal, Vol. 29, pp. 1686-169, 1991.
[42]T. L. Norman and C. T. Sun, Mechanical Properties and Interlaminar Toughness of Cross-Plied Laminates Containing Adhesive Strips, American Institute of Aeronautics and Astronautics Journal, Vol. 29, pp. 247–252, 1991.
[43]H. R. Daghyani, L. Ye, and Y. W. Mai, Mixed-Mode Fracture of Adhesively Bonded CF/Epoxy Composite Joints, Journal of Composite Material, Vol.30, pp. 1248-1256, 1996.
[44]M. Todo and P. Y. B. Jar, Study of Mode-I Interlaminar Crack Growth in DCB Specimens of Fibre-Reinforced Composites, Composites Science and Technology, Vol. 58, pp. 105-118, 1998.
[45]Y. Tanzawa, N. Watanable, and T. Ishikawa, FEM Simulation of a Modified DCB test for 3-D Orthogonal Interlocked Fabric Composites, Composites Science and Technology, Vol. 61, pp.1097–1107, 2001.
[46]ASTM D6671/D6671M-06, Standard Test Method for Mix Mode I Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites, ASTM, 2006.
[47]H. Youssef, A. Ferrand, P. Calmon, P. Pons, and R. Plana, Methods to Improve Reliability of Bulge Test Technique to Extract Mechanical Properties of Thin Films, Microelectronics Reliability, Vol. 50, pp.1888-1893, 2010.
[48]M. Zheng, Y. J. Su, L. Q. Chen, and T. Y. Zang, Frictional Effects of Interface Bonding Energy in Blister Testing, Theoretical and Applied Freacture Mechanics, Vol. 32, pp.75-80, 1999.
[49]L. M. Jiang, Y. C. Zhou, Y. G. Liao, and C. Q. Sun, A Pressurized Blister Test Model for the Interface Adhesion of Dissimilar Elastic-Plastic Materials, Materials Science and Engineering: A, Vol. 487, pp.228-234, 2008.
[50]D. Xiang, M. Chen, and F. Sun, Finite Element Modeling and Blister Test to Investigate the Adhesive Strength of Diamond Thin Film, Key Engineering Materials, Vols. 359-360, pp. 85-89, 2008.
[51]J. M. Beam, Mechanical Properties of Thin Film of Gold and Silver, Presented at International Conference on Structure and Properties of Thin Films, Bolton Landing, New York, 1959
[52]S. P. Timoshenko and S. W. Krieger, Theory of Plates and Shells, Second Edition, McGraw Hill, 1959.
[53]P. Y. Lin, The In-Situ Measurement of Mechanical Properties of Multi-Layer Coatings, Ph. D. dissertation, Massachusetts Institute of Technology, 1990.
[54]J. Y. Pan, P. Lin, F. Maseeh, and S. D. Senturia Verification of FEM Analysis of Load-Defection Methods for Measuring Mechanical Properties of Thin Films, in IEEE Conference, pp.70-73, 1990.
[55]B. J. Briscoe and S. S. Panesar, The Application of the Blister Test to an Elastomeric Adhesive, Proceedings the Royal Socirty A,Vol. 433, pp.23-43, 1991.
[56]E. H. Andrews and A. Stevenson, Fracture Energy of Epoxy Resin Under Plane Strain Conditions, Journal of Material Science, Vol. 13, pp.1680-1688, 1978.
[57]R. J. Hohlfelder, Bulge and Blister Testing of Thin of Thin Films and Their Interfaces, Ph. D. Dissertation, Department of Mechanical Engineering, Stanford University,1999.
[58]I. Black and K. L. Chua, Laser Cutting of Thick Ceramic Tile, Optics and Laser Technology, Vol. 29, pp. 193-205, 1997.
[59]M. Ikeda, T. Shibata, E. Makino, Y. Takahashi, and H. Koshida, Study on Laser Breaking of Glass Plates(2nd Report)-the Optimum 〖CO〗_2 Laser Beam Irradiating Condition, Journal of the Japan Society for Precision Engineering, Vol. 66, pp. 213-217, 2000.
[60]C. H. Tsai and B. W. Huang, Diamond Scribing, and Laser Breaking for LCD Glass Substrates, Journal of Materials Processing Technology, Vol. 198, pp. 350-358, 2008.
[61]Bulge test 實驗架設圖, NiTiTex, Research of Functional Textiles Based on SAM filaments
http://www.iehk.rwth-aachen.de/index.php?id=52&L=2
[62]薄膜承受均勻壓力的變形圖,the Steel Department of RWTH Aachen University, Department of Ferrous Metallurgy
http://department.fzu.cz/ofm/nititex/index.php?option=com_content&view=article&id=81&Itemid=84&lang=en#0
[63]K. S. Chen, Materials Characterization and Structural Design of Ceramic Micro Turbo Machinery, Ph.D. Dissertation, Department of Mechanical Engineering, Massachusetts Institute of Technology, 1999.
[64]超薄玻璃,康寧公司http://www.corning.com/tw/tc/news_center/news_releases/2012/2012060401.aspx



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊