跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 21:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝其昌
研究生(外文):Chi-ChangHsieh
論文名稱:矽穿孔結構熱應力對矽晶反轉層移動率之影響
論文名稱(外文):Analysis of Through-Silicon Via Thermal Stresses Induced Mobility Change in Silicon Inversion Layer
指導教授:屈子正
指導教授(外文):Tz-Cheng Chiu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:141
中文關鍵詞:直通矽穿孔矽晶反轉層移動率熱應力
外文關鍵詞:TSVinversion layersmobilitythermal stress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
直通矽穿孔(through silicon via;TSV)三維積體電路已成為提高設備密度和開發系統及封裝解決方案的主要技術之一,TSV結構面臨一個關鍵問題是銅柱與矽基板的熱膨脹係數差異太大,造成材料的不匹配,而產生熱應力。熱應力對TSV結構電性的影響,我們可以由熱應力對矽晶反轉層引起的電子或電洞移動率的變化觀察到。
本研究是用數值方法模擬TSV銅柱周圍的應力集中現象,估計在n-MOSFET與p-MOSFET矽晶反轉層載子移動率的影響。首先利用有限元素分析矽在(001)表面,有TSV結構的矽芯片與沒有TSV結構的矽芯片應力差異。再來把矽的應力變化帶入壓阻公式,計算延著通道路徑方向載子移動率的變化。然後比較應變矽與非應變矽,延著通道〈100〉晶格方向或〈110〉晶格方向結果。我們也考慮改變幾何尺寸,如TSV直徑,銅柱的間距,和矽晶厚度,比較移動率的變化。最後我們有以一個更逼真的有封膠3D堆疊芯片模型進行分析。探討TSV晶片角落位置,應力對載子移動率的影響。透過研究結果,我們定義一個排除區在TSV銅柱周圍,以做為未來設計規則。

Three-dimensional (3D) integration using through-silicon via (TSV) has emerged as one of the primary technologies for increasing device density and developing system-in-package solutions. A critical concern for TSV is the thermal stress developed in the 3D structure as a result of the significant difference in the coefficients of thermal expansions (CTE) between the Cu via and the Si substrate. The influence of the TSV-related thermal stress on the electrical characteristics may be considered by the thermal stress-induced electron or hole mobility changes in the Si inversion layer.
In this study, effects of stress concentration around Cu TSV on carrier mobility in n-MOSFET and p-MOSFET Si inversion layers were estimated by using numerical simulations. Finite element analyses were first performed to determine the difference in stress state on the (001) Si surface when the Si die is changed from a configuration without TSV to one with TSV. The changes of stresses were then substituted into piezoresistance equations for silicon to determine carrier mobility changes along the channel directions. Results were obtained for transistors with channels either along 〈100〉 or 〈110〉 direction, and for devices fabricated with either strained-Si or unstrained-Si technology. Geometrical factors such as through-silicon via diameter, via pitch and die thickness on mobility were also considered. A more realistic model of a 3D-stacked die in an overmolded package was also analyzed to investigate the effect of TSV-die corner stress interaction on carrier mobility. Results of the study can be served as a basis for defining the keep-out dimension around the Cu TSV in layout design rules.

摘要 …………………………………………………………………….…………… I
英文摘要 …………………………………………………………………………… II
誌謝 ………………………………………………………………………..……… IV
目錄 ………………………………………………………………………………… V
表目錄 …………………………………………………………………………… VIII
圖目錄 …………………………………………………………………………..… IX
符號說明 ………………………………………………………………………… XIX
第一章 緒論 …………………………………………………………………...…… 1
1.1 矽穿孔電子封裝技術 …………………………………………………..… 2
1.2 研究動機與方法 ………………………………………………………..… 3
1.3文獻回顧 ………………………………………………………………...… 4
1.4研究目的 ………………………………………………………………...… 9
1.5本文架構 ……………………………………………………………….… 10
第二章 理論基礎 …………………………………………………………….…… 11
2.1晶體結構 …………………………………………………………….…… 11
2.2能帶結構 …………………………………………………………….…… 11
2.3能帶結構計算方法 ………………………………………………….…… 14
2.4反轉層的次能帶 …………………………………………………….…… 14
2.5應變的影響 ……………………………………………………………… 15
2.6壓阻公式 ………………………………………………………………… 19
第三章 週期TSV結構熱應力及移動率變化 ………………………………….. 22
3.1 TSV結構及有限元素模型 ……………………………………………… 22
3.2材料性質 ………………………………………………………………… 24
3.3數值模擬 …………………………………………………………………. 29
3.3.1不同矽晶晶格方向模擬比較 …………………………………….... 29
3.3.2 TSV封裝體正規陣列(regular array)與錯位陣列(staggered array) .. 36
3.4 TSV封裝體矽晶反轉層載子移動率 ……………………………………. 41
3.4.1應力對不同晶格方向TSV移動率的變化 ……………………….. 43
3.4.2正規陣列與錯位陣列移動率變化 ………………………………… 56
3.5改變TSV幾何尺寸和形狀移動率比較 ……………………………....… 61
3.5.1比較不同的TSV直徑 …………………………………………..… 61
3.5.2比較不同的矽晶厚度 ……………………………………………… 66
3.5.3比較不同的銅柱間距 ……………………………………………… 71
3.5.4中空TSV ………………………………….……………………....… 76
3.6 TSV對應變矽載子移動率之影響 …………………………………….… 82
3.7排除區(Keep-out zone) ………………………………………………….… 88

第四章 全域-局部耦合有限元素模型 …………………………………………… 97
4.1正規陣列與錯位陣列全域-局部耦合模型 ……………………………… 97
4.2不同晶格方像正規陣列與錯位陣列全域-局部耦合模型 …………..… 102
4.3不同晶格方向正規陣列與錯位陣列全域-局部耦合模型移動率 …..… 116
第五章 結論與未來研究方向 ………………………………………………...… 134
5.1 結論 …………………………………………………………………..… 134
5.2未來研究方向 ………………………………………………………...… 135
參考文獻 ……………………………………………………………………….… 136
自述 …………………………………………………………………………….… 141

[1]P. Garrou and C. Bower, “Overview of 3D Integration Process Technology, Chapter 3 in Handbook of 3D IC Integration: Technology and Applications, P. Garrou, C. Bower and P. Ramm Eds., Wiley VCH, 2008.
[2]C. S. Smith, “Piezoresistance effect in germanium and silicon, Physical Review, vol. 94, pp. 42-49, 1954.
[3]M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang and K. Rim, “Six-band k∙p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness, Journal of Applied Physics, vol. 94, pp. 1079-1095, 2003.
[4]E. Wang, P. Matagne, L. Shifren, B. Obradovic, R. Kotlyar, S. Cea, J. He, Z. Ma, R. Nagisetty, S. Tyagi, M. Stettler and M. D. Giles, “Quantum mechanical calculation of hole mobility in silicon inversion layers under arbitrary stress, in 2004 IEEE International Electron Devices Meeting (IEDM 2004), San Francisco, CA, 2004, pp. 147-150.
[5]S. E. Thompson, S. Suthram, Y. Sun, G. Sun, S. Parthasarathy, M. Chu, T. Nishida, “Future of strained Si/semiconductors in nanoscale MOSFETs, in 2006 IEEE International Electron Devices Meeting (IEDM 2006), San Francisco, CA, 2006, pp. 1-4.
[6]A. T. Pham, C. Jungemann and B. Meinerzhagen, “Modeling of hole inversion layer mobility in unstrained and uniaxially strained Si on arbitrarily oriented substrates, in 2007 European Solid State Device Research Conference (ESSDERC 2007), Munich, Germany, 2007, pp. 390-393.
[7]G. Sun, Y. Sun, T. Nishida and S. E. Thompson, “Hole mobility in silicon inversion layers: Stress and surface orientation, Journal of Applied Physics. vol. 102, p. 084501, 2007.
[8]O. Weber, T. Irisawa, T. Numata, M. Harada, N. Taoka, Y. Yamashita,T. Yamamoto, N. Sugiyama, M. Takenaka and S. Takagi, “Examination of additive mobility enhancements for uniaxial stress combined with biaxially strained Si, biaxially strained SiGe and Ge channel MOSFETs, in 2007 IEEE International Electron Devices Meeting (IEDM 2007), San Francisco, CA, 2007, pp. 719-722.
[9]O. Weber, M. Takenaka and S. I. Takagi, “Experimental determination of shear stress induced electron mobility enhancements in Si and biaxially strained-Si metal–oxide– semiconductor field-effect transistors, Japanese Journal of Applied Physics, vol. 49, p. 074101, 2010.
[10]S. T. Chang, S. H. Liao, W. C. Wang, C. Y. Lin and J. W. Fan, “Impact of stress engineering on electron mobility and ballistic current for strianed Si MOSFETs, Journal of Korean Phsical Society, vol. 53, pp. 1024-1029, 2008.
[11]K. Huet, M. Feraille, D. Rideau, R. Delamare, V. Aubry-Fortuna, M. Kasbari, S. Blayac, C. Rivero, A. Bournel, C. Tavernier, P. Dollfus and H. Jaouen, “Experimental and theoretical analysis of hole transport in uniaxially strained pMOSFETs,in 2008 European Solid State Device Research Conference (ESSDERC 2008), Edinburgh, UK, 2008, pp. 234 - 237.
[12]S. Zhao, L. Guo, J. Wang, J. Xu and Z. Liu, “Impacts of additive uniaxial strain on hole mobility in bulk Si and strained-Si p-MOSFETs Journal of Semiconductors, vol. 30, p. 104001, 2009.
[13]A. T. Pham, C. Jungemann and B. Meinerzhagen, “Simulation of mobility variation and drift velocity enhancement due to uniaxial stress combined with biaxial strain in Si PMOS, in 2009 International Workshop on Computational Electronics (IWCE 2009), Beijing, China, 2009, pp. 1–4.
[14]A. T. Pham, C. Jungemann and B. Meinerzhagen, “Modeling and validation of piezoresistive coefficients in Si hole inversion layers Solid-State Electronics, vol. 53, pp. 1325–1333, 2009.
[15]T. Chidambaram, C. McDonough, R. Geer and W. Wang, “ TSV stress testing and modeling for 3D IC applications,in 2009 International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA 2009), Suzhou, China, 2009, pp. 727-730.
[16]K. Athikulwongse, A. Chakraborty, J. S. Yang, D. Z. Pan and S. K. Lim, “Stress-driven 3D-IC placement with TSV keep-out zone and regularity study, in 2010 International Conference on Computer Aided Design (ICCAD 2010), California, USA, 2010, pp. 669-674.
[17]C. Selvanayagam and X. Zhang, “Modeling stress in silicon with TSVs and its effect on mobility, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, pp. 1328-1335, 2011.
[18]S. Flachowsky, A. Wei, R. Illgen, T. Herrmann, J. Hontschel, M. Horstmann, W. Klix and R. Stenzel, “Understanding strain-induced drive-current enhancement in strained-silicon n-MOSFET and p-MOSFET, in IEEE Transactions on Electron Devices, vol. 57, pp. 1343-1354, 2010.
[19]S. Dhar, “Analytical mobility modeling for strained silicon-based devices, Ph.D. Dissertation, Institut für Mikroelektronik, Technische Universität Wien, Vienna, Austria, 2007.
[20]S. E. Ungersböck, “Advanced modeling of strained CMOS technology, Ph.D. Dissertation, Vienna Tech. Univ, Vienna, Austria, 2007.
[21]倪澤恩,基礎固態物理,五南圖書出版公司,民國100年。
[22]H. Nakatsuji, Y. Kamkura and K. Taniguchi, “A study of subband structure and transport of two-dimensional holes in strained Si p-MOSFETs using full-band modeling, in 2002 International Electron Devices Meeting (IEDM’02), San Francisco, CA, 2002, pp. 727-730.
[23]林以唐,奈米及金氧半場效電晶體應變矽物理之研究,碩士論文,國立交通大學,2008。
[24]林宏年、呂嘉裕、林鴻志、黃調元,局部與全面形變矽通道(strained Si channel)互補式金氧半(CMOS)之材料、製程與元件特性分析(I),奈米通訊,第十二卷第一期,第44-49頁,2005。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top