跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李哲維
研究生(外文):Jhe-WeiLi
論文名稱:堆疊式壓電雙軸精密定位平台之設計、分析與控制
論文名稱(外文):Analysis, Design, and Control of a Cascaded Piezoelectric Actuated Two-Degrees of Freedom Precision Stage
指導教授:陳國聲
指導教授(外文):Kuo-Shen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:165
中文關鍵詞:自動化光學檢測雙軸精密定位平台壓電致動器電容式位移感測器FPGA
外文關鍵詞:Automatic Optical InspectionPrecision Positioning StagesPiezoelectric ActuatorsCapacitive SensorsFPGA
相關次數:
  • 被引用被引用:8
  • 點閱點閱:548
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:1
近年來,主動式振動控制發展快速,應用層面多樣化,如自動化光學檢測設備。本論文主要研究目的在發展出雙軸精密定位平台應用於自動化光學檢測機台,期望能將此一雙軸精密定位平台用來抑制機台在啟動與停止時所造成CCD鏡頭的晃動,達到高精確度的快速定位。本研究研製一閉迴路雙軸微奈米定位系統,機構設計部分採用兩個具位移放大機構之單軸撓性定位平台堆疊組裝,成為一雙軸撓性定位平台。控制系統部分以LabVIEW FPGA撰寫程式作定位控制系統之整合。系統主要元件包含雙軸微奈米定位平台、壓電致動器、壓電放大器、電容式位移感測器、PC 等。依據本研究所研發之雙軸精密定位平台實驗結果,在耦合實驗測試方面,藉由PID控制器及滑動模態控制器可將耦合效應造成的位移偏移量從0.5μm、0.1μm分別抑制到0.07μm、0.05μm。在圓形路徑追蹤實驗方面,固定圓半徑,改變追蹤圓形路徑之頻率,PID控制器及滑動模態控制器分別可追蹤圓頻率至15Hz及25Hz;固定圓頻率,改變追蹤圓形路徑之半徑,PID控制器及滑動模態控制器分別可追蹤圓半徑至5μm及15μm。本研究設計的微奈米定位整合系統之特點在於結構設計與控制邏輯簡單,硬體需求不須太高,卻能達到高精度的定位需求。在未來希望能以此研究結果做為基礎,朝向行程更長、精度更高的定位系統發展,更能將各項已成熟的技術加以整合,開發出性能優異的精密儀器設備。
In recent years, Automatic Optical Inspection (AOI) plays an important role on modern semiconductor and optical industries. A typical AOI equipment consists of a camera mounted on a gantry for performing large-area inspection. Fast and accurate movement would influence the inspection efficiency. However, the motion induced vibration during fast transition could significantly increase the settling time and therefore deteriorate the inspection rate. In this thesis, a piezoelectric driven compliant stage was design as the carrier for camera. By integrating control scheme with the stage, it is possible to suppress the vibration and therefore improve the performance of AOI. The objective of this research is to develop a PC-based closed loop X-Y axes micro-nano positioning system. The developed system mainly consists of two piezoelectric actuators, two displacement magnification mechanism, the micro-nano positioning stage analyzed by the FEM software -ABAQUS, piezo amplifier, two capacitive sensors, and a PC. The structure of the positioning stage has been designed as stacked serial type. A lever for displacement magnification mechanism has been used to enlarge the travel of each PZT actuator. The movement of the designed micro-nano positioning stage body was constrained by four sets of flexible hinge cut by wire electrical discharge machining.The geometric dimensions of the hinge have been determined by executing the optimization function using the ABAQUS software on static and dynamic analysis. Based on the test results, the designed stage have good performance in fix-point control and dynamic tracking. This study has successfully set up a positioning system. Its characteristic is simple structure with low cost and low-needed of hardware equipment. This positioning system can achieve high-precise motion. It is hope that the result of this study can be expanded to longer stroke and higher precise positioning system, and integrates every mature technology to develop more superior precise instrument in the future.
摘要...........................................I
Abstract.....................................II
致謝..........................................III
目錄..........................................IV
表目錄......................................VIII
圖目錄......................................IX
符號說明..................................XV
第一章 緒論..........................................1
1.1 前言............................................1
1.2 研究動機與目的....................................9
1.3 文獻回顧........................................11
1.4 研究方法........................................14
1.5 全文架構........................................16
第二章 研究背景介紹...................................18
2.1 本章介紹........................................18
2.2 微奈米定位技術研究背景.........................19
2.3 撓性微定位平台相關應用.........................22
2.3.1 撓性結構......................................23
2.3.2 槓桿式放大機構.................................24
2.4 硬體介紹及相關應用...........................29
2.4.1 壓電致動器....................................29
2.4.2 電容式感測器..................................29
2.4.3 FPGA..........................................31
2.4.4 嵌入式控制器(CompactRIO).................32
2.5 控制法則介紹及相關應用............................35
2.6 本章結論..........................................40
第三章 雙軸撓性定位平台之設計與分析.............41
3.1 本章介紹.........................................41
3.2 堆疊式定位平台設計.................................42
3.2.1 概念性設計..................................... 43
3.2.2 實體平台設計....................................44
3.3 撓性定位平台理論分析...............................49
3.4 撓性定位平台有限元素分析.......................54
3.5 本章結論.....................................63
第四章 系統動態測試與控制器設計................64
4.1 本章介紹........................................64
4.2 實驗架構與系統建模................................65
4.2.1 實驗系統架構...................................66
4.2.2 動態性能測試...................................68
4.2.3 系統模型之參數量測..............................75
4.3 PID控制器設定...................................81
4.3.1 PID控制理論...................................81
4.3.2 控制器設定之Zeigler-Nichols參數調整法.....82
4.4 滑動模態控制器設計...........................84
4.5 輸入修正法結合控制器設計........................89
4.5.1 輸入修正法理論.................................89
4.5.2 輸入修正法之控制................................92
4.5.3 輸入修正法結合回授控制器設計.............93
4.6 本章結論........................................94
第五章 上層平台之控制模擬與實驗..........................95
5.1 本章介紹........................................95
5.2 步階響應之模擬與實驗...............................96
5.2.1 PID控制器之定點控制模擬與實驗.....................96
5.2.2 滑動模態控制器之定點控制模擬與實驗.................103
5.2.3 輸入修正結合回授控制器之控制實驗...................110
5.3 受干擾後之步階響應實驗.............................112
5.3.1 PID控制器強健性實驗.............................112
5.3.2 滑動模態控制器強健性實驗..........................114
5.4 正弦波運動軌跡追蹤..................................117
5.5 本章結論.........................................121
第六章 下層平台之控制模擬與實驗...........................122
6.1 本章介紹.........................................122
6.2 步階響應之模擬與實驗................................123
6.3 受干擾後之步階響應實驗...............................126
6.4 正弦波運動軌跡追蹤.................................127
6.5 本章結論.........................................131
第七章 雙軸堆疊式定位平台之控制實驗.......................132
7.1 本章介紹.........................................132
7.2 耦合測試.........................................133
7.3 圓形路徑追蹤實驗..................................136
7.4  本章結論........................................143
第八章 研究結果與討論..................................144
8.1 本章介紹........................................144
8.2 PID控制器與滑動模態控制器定位能力之討論...................................................145
8.2.1 步階響應.......................................145
8.2.2 受干擾之步階響應.................................147
8.2.3 正弦波路徑追蹤...................................148
8.2.4 耦合實驗測試....................................149
8.2.5 圓形路徑追蹤實驗.................................149
8.3 雙軸撓性平台性能規格與實際應用上之可行性討論.............150
8.4 本章結論..........................................152
第九章 結論與未來展望...................................153
9.1 全文歸納..........................................153
9.2 結論.............................................155
9.3 本文貢獻..........................................157
9.4 未來展望..........................................158
參考文獻..............................................160
附錄..................................................164
自述..................................................165
[1]Automatic Optimal Inspection Machine, TRT Innovation.
http://www.tri.com.tw/cht/index.aspx
[2]QC Inspection Services, Inc.
http://www.qcinspect.com/coursedesc_CMMprogramming.htm
[3]S. Verma, W. J. Kim, and H. Shakir,“Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications, IEEE Transactions on Industry Applications, vol. 41, pp. 1159-1167, September 2005.
[4]F. J. Lin and P. H. Shieh, “Recurrent RBFN-based fuzzy neural network control for X-Y-θ motion control stage using linear ultrasonic motors, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 53, no. 12, December 2006.
[5]D. W. Pohl, “Dynamic Piezoelectric Translation Devices, Review of Scientific Instruments, vol. 58, no. 1, January 1987.
[6]P. Gao, H. Tan, and Z. Yuan, “The design and characterization of a piezo-driven ultra-precision stepping positioner, Measurement Science and Technology, vol. 11, no. 2, N15-N19, February 2000.
[7]J. W. Ryu, D. G. Gweon, and K. S. Moon, “Optimal design of a flexure hinge based XYθ wafer stage, Precision Engineering, vol. 21, pp. 18-28, July 1997.
[8]Parallel and Serial Stage Designs, Piezo, Nano, Positioning PI, Physik Instrumente, 2005.
[9]TFT-LCD Chip on Glass
http://robotics.csie.ncku.edu.tw/Students/PhD/93/Nat/ChipOnGlass.htm
[10]J. M. Paros and L. Weisbord, “How to design flexure hinge, Machine Design, 37, pp. 151-156, November 1965.
[11]W. Xu and T. King, “Flexure hinges for piezoactuactor displacement amplifier: flexibility, accuracy, and stress considerations, Precision Engineering, vol. 19, pp. 4-10, July 1996.
[12]張昫揚, 長行程奈米定位系統研究, 國立中興大學機械工程學系碩士論文, 2002.
[13]F. E. Scire and E. C. Teague, “Piezodriven 50-μm range stage with subnanometer resolution, Review of Scientific Instruments, vol. 49, no. 12, pp. 1735-1740, December 1978.
[14]S. T. Smith, D. G. Chetwynd,and D. K. Bowen, “Design and assessment of monolithic high precision translation mechanisms, Journal of Physics E: Scientific Instruments, vol. 20, no. 8, pp. 977-983, August 1987.
[15]B. Zettl, W. Szyszkowski, and W. J. Zhang “Accurate low DOF modeling of a planar compliant mechanism with flexure hinges: the equivalent beam methodology, Precision Engineering, vol. 29, pp. 237-245, 2004.
[16]Shorya Awtar, Synthesis and analysis of parallel kinematic XY flexure mechanisms, M.S. thesis, Massachusetts Institute of Technology, 2003.
[17]朱志良, 奈米級三次量測儀之研制, 台灣大學機械工程學系博士論文, 2002.
[18]J. C. Shen, W. Y. Jywe, H. K. Chiang, and Y. L. Shu, “Precision tracking control of a piezoelectric-acuated system, in Proceedings of the 15th Mediterranean Conference on Control & Automation, 2007, pp. 1-6.
[19]王維志, 具放大機構之單軸壓電驅動撓性精密定位平台之分析、設計、控制, 國立成功大學機械工程學系碩士論文, 2010.
[20]井澤實編著、杜光宗編譯, 精密定位技術及其設計技術, 建宏出版社, 2~7、26~33、217~329 頁, 中華民國八十五年七月初版.
[21]江浩寧, 壓電致動刀具載台之設計分析及其在類銑削加工上之應用, 國立成功大學機械工程學系碩士論文, 2004。
[22]S. K. Choudhury, N. N. Goudimenko, and V. A. Kudinov, “On-line control of machine tool vibration in turning, International Journal of Machine Tools and Manufacture, vol. 37, pp. 801-811, June 1997.
[23]李宏仁, 微米級定位平台振動主動控制之研究, 南台科技大學奈米科技研究所碩士論文, 2008。
[24]M. Tanaka, “The dynamic properties of monolithic mechanism with notch flexure hinges for precision control of orientation and position, Japanese Journal of Applied Physics, vol. 22, no.1, pp. 193-200, January 1983.
[25]A. Hara and K. Sugimoto, “Synthesis of parallel micromanipulators, ASME J. of Mechanisms, Transmissions, and Automation in Design, vol. 49, no. 12, pp.1735-1740, 1978.
[26]I. Her and J. C. Chang, “A linear scheme for the displacement analysis of micropositioning stages with flexure hinges, ASME J. of Mechanical Design, vol. 116, no. 3, pp. 770-776, September 1994.
[27]J. R. Matey, R. S. Crandall, and B. Brychi, “Bimorph-driven X-Y-Z translation stage for scanned image microscopy, Review of Scientific Instruments, vol. 58, no. 4, pp. 567-570, 1987.
[28]簡宏彰, 三自由度超精密微定位平臺之研究, 台灣大學機械工程學系碩士論文, 1996.
[29]謝士渠, 壓電致動器運用在XYθz精密定位平台之設計與實驗, 台灣大學機械工程學系碩士論文, 2001.
[30]趙銘靖, 應用PID控制於單軸撓性壓電定位平台之振動控制研究, 南台科技大學機械工程學系碩士論文, 2011.
[31]B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim, and I. H. Suh, “Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges, IEEE Transactions on Robotics and Automation, vol. 19, no. 4, August 2003.
[32]范盛豪, 奈米定位平台與光學式位移量測系統之研製, 南台科技大學機械工程學系碩士論文, 2004.
[33]A. Balasubramanian, M. B. G. Jun, R. E. Devor, S. G. Kapoor, “A submicron multiaxis positioning stage for micro and nanoscale manufacturing processes, ASME J. of Manufacturing Science and Engineering, vol. 130, pp. 1-8, June 2008.
[34]T. J. Lewis, “The piezoelectric effect, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005, pp. 717-720.
[35]National Instruments美商國家儀器公司, NI Labview FPGA , 2009.
[36]嵌入式控制器, NI CompactRIO
http://www.ni.com/compactrio/zht/
[37]NI CompactRIO工業控制/裝置/系統應用
http://sine.ni.com/cs/app/doc/p/id/cs-11276
[38]NI機車工業應用
http://sine.ni.com/cs/app/doc/p/id/cs-538
[39]Q. Xu and Y. Li, “Global sliding mode-based tracking control of a piezo-driven XY micropositioning stage with unmodeled hysteresis, in Intelligent Robots and Systems on IEEE/RSJ International Conference, St. Louis, USA, pp. 755-760, October 11-15, 2009.
[40]黃柏凱、謝欣然、林法正, 應用於壓電致動器之單純位置回授適應性步階迴歸控制器, 電機月刊, No. 176, 頁 216 – 229, 2005年8 月。
[41]莊鎮文, 力量估測器於主動式振動抑制實作, 國立中山大學機械與機電工程學系碩士論文, 2002。
[42]G. S. Choi, H. S. Kim, and G. H. Choi, “A study on position control of piezoelectric actuators, in Proceedings of the IEEE International Symposium on Industrial Electronics, vol. 3, pp. 851 -855, 1997.
[43]林得耀, 以壓電致動器磁滯模型作基礎之控制補償, 國立彰化師範大學機電工程所碩士論文, 2003。
[44]K. Hu, J. H. Kim, J. Schmiedeler, and C. H. Menq, “Design, implementation, and control of a six-axis compliant stage, Review of Scientific Instruments 79, 025105 , 2008
[45]李滄洲, 應用晶片於精密定位系統之研究, 國立中興大學機械工程學系碩士論文, 2002。
[46]陳宗霖, 微小化定位平台之控制器設計, 國立中興大學機械工程學系碩士論文, 2005。
[47]S. T. Smith and D. G. Chetwynd, Foundations of Ultraprecision Mechanism Design, Gordon and Breach Science Publishers, USA, 1994.
[48]S. S. Rao, Mechanical vibrations, 4th ed. N.J: Pearson Education, 2004.
[49]張碩, 自動控制系統, 鼎茂圖書, 台北, 2001.
[50]J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood-Cliff., N.J., 1991.
[51]O. J. M. Smith, “Posicast control of Damped oscillatory systems, Proceedings of the IRE, vol. 45, pp. 1249-1255, 1957.
[52]N. C. Singer and W. P. Seering, “Preshaping command inputs to reduce system vibration, ASME J. of Dynamic Systems Measurement and Control, vol. 112, pp. 76-82, March 1990.
[53]尹瑞豐, 非線性輸入修正法之研究與其在機電系統減振上之應用, 國立成功大學機械工程學系碩士論文, 2003.
[54]Q. L. Hu, Z. W, and H. G, “Sliding mode and shaped input vibration control of flexible systems, IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 2, April 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top