跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張宇凡
研究生(外文):Yu-FanChang
論文名稱:開發半球熱輻射性質量測系統並呈現微/奈米結構之特殊頻譜
論文名稱(外文):Development of a Hemispherical Radiative Properties Measurement System and Experimentally Demonstration of Unique Features in Spectra from Micro/Nano-scale Structures
指導教授:陳玉彬陳玉彬引用關係
指導教授(外文):Yu-Bin Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:83
中文關鍵詞:散射半球輻射性質積分球單光儀繞射
外文關鍵詞:diffractionhemispherical radiative propertiesintegrating spheremonochromatorscattering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
微奈米結構近年來廣泛發展,微奈米結構經過幾何形狀、尺寸與材質的設計可調變其光學或熱輻射性質,並可藉由數值模擬呈現。設計出的微奈米結構藉由微奈米製程技術製作成形,被製作出的微奈米結構所呈現光學與熱輻射性質與原設計是否有差異,則需藉由輻射性質量測設備檢測。本研究利用燈源、濾波輪與單光儀等設備組成單色光供應系統,功能為提供輻射性質量測時所需的單波長光源部分,以截波器、積分球、鎖相放大器與資料擷取卡等設備組成訊號擷取系統,功能為將光源強度轉換為電壓訊號並經由電腦做資訊統計與整理,而將兩子系統合併即為半球熱輻射性質量測系統,最後成功呈現單一材質矽與氧化鋁平板、一維與二維矽材質光柵、多孔性氧化鋁薄膜與六角最密堆積金圓盤結構的輻射性質,且與數值模擬結果吻合,並說明各類樣本展現的頻譜特性與物理機制。
Recently research in radiative properties of micro/nano structures depend on how to construct it by different geometric, dimension and material is popular. After micro/nano structures was fabricated, it should be verified by equipment that use for measuring radiative properties. In this work, the monochromatic light supply system was composed of some device is like the lamp, the light filter and the monochromator that can provide the monochromatic light. The signal process system was composed of some device is like the chopper, the integrating sphere and the lock-in amplifier that can transfer the light intensity to the voltage and process with the computer. Hemispherical radiative properties measurement system was composed of the sub-system, and perform the hemispherical radiative properties of the silicon panel, the aluminium oxide panel, the 1-D/2-D silicon grating, the porous aluminium oxide thin film and hexagonal close-packed gold disk on indium tin oxide glass.
摘要 i
Abstract ii
致謝 iii
圖目錄 vi
表目錄 x
符號表 xi
第一章 緒論 1
1.1 背景介紹 1
1.2 研究動機 3
1.3 研究目標 4
第二章 模擬理論 5
2.1 嚴格耦合波理論 5
2.2 等效介質理論 6
2.3 光追溯法 7
2.4 光譜平均法 10
2.5 有限元素法 12
第三章 實驗設置 17
3.1 半球輻射性質量測系統 17
3.1.1 設備架構 18
3.1.2 組成元件 20
3.1.3 量測方式 38
3.2 傅立葉轉換紅外線光譜儀 43
3.2.1 設備架構 43
3.2.2 量測方式 46
3.3 樣本介紹 48
3.3.1 一維與二維矽材料光柵 49
3.3.2 多孔性氧化鋁薄膜 52
3.3.3 六角最密堆積金圓盤結構 55
第四章 結果與討論 59
4.1 一維與二維矽材質光柵 59
4.2 多孔性氧化鋁薄膜 63
4.3 六角最密堆積金圓盤結構 65
第五章 結論與未來工作 73
5.1 結論 73
5.2 未來工作 74
參考文獻 75
[1]I. Yamada, N. Yamashita, K. Tani, T. Einishi, M. Saito, K. Fukumi, and J. Nishii, Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass, Optics Letters, vol. 36, pp. 3882-3884, Oct 1 2011.
[2]I. Yamada, K. Fukumi, J. Nishii, and M. Saito, Infrared wire-grid polarizer with Y2O3 ceramic substrate, Optics Letters, vol. 35, pp. 3111-3113, Sep 15 2010.
[3]I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, Terahertz wire-grid polarizers with micrometer-pitch Al gratings, Optics Letters, vol. 34, pp. 274-276, Feb 1 2009.
[4]I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, Transmittance enhancement of a wire-grid polarizer by antireflection coating, Applied Optics, vol. 48, pp. 316-320, Jan 10 2009.
[5]I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, Mid-infrared wire-grid polarizer with silicides, Optics Letters, vol. 33, pp. 258-260, Feb 1 2008.
[6]I. Yamada, J. Nishii, and M. Saito, Modeling, fabrication, and characterization of tungsten silicide wire-grid polarizer in infrared region, Applied Optics, vol. 47, pp. 4735-4738, Sep 10 2008.
[7]H. H. Lin, C. H. Lee, and M. H. Lu, Dye-less color filter fabricated by roll-to-roll imprinting for liquid crystal display applications, Optics Express, vol. 17, pp. 12397-12406, Jul 20 2009.
[8]Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, Color filter incorporating a subwavelength patterned grating in poly silicon, Optics Express, vol. 16, pp. 2374-2380, Feb 18 2008.
[9]Y. Kanamori, M. Shimono, and K. Hane, Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates, Ieee Photonics Technology Letters, vol. 18, pp. 2126-2128, Sep-Oct 2006.
[10]Y. M. Song, J. S. Yu, and Y. T. Lee, Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement, Optics Letters, vol. 35, pp. 276-278, Feb 1 2010.
[11]K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, and A. Mascarenhas, Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications, Advanced Materials, vol. 20, pp. 3248-3253, 2008.
[12]J. G. Mutitu, S. Y. Shi, C. H. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, Thin film silicon solar cell design based on photonic crystal and diffractive grating structures, Optics Express, vol. 16, pp. 15238-15248, Sep 15 2008.
[13]M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, Diffraction gratings and buried nano-electrodes - architectures for organic solar cells, Thin Solid Films, vol. 451, pp. 619-623, Mar 22 2004.
[14]H. Sai and H. Yugami, Thermophotovoltaic generation with selective radiators based on tungsten surface gratings, Applied Physics Letters, vol. 85, pp. 3399-3401, 2004.
[15]Y. B. Chen and Z. M. Zhang, Design of tungsten complex gratings for thermophotovoltaic radiators, Optics Communications, vol. 269, pp. 411-417, 2007.
[16]H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane, Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region, J. Opt. Soc. Am. A, vol. 18, pp. 1471-1476, 2001.
[17]H. Sai, H. Yugami, Y. Kanamori, and K. Hane, Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion, Solar Energy Materials and Solar Cells, vol. 79, pp. 35-49, 2003.
[18]D. Noda, M. Tanaka, K. Shimada, and T. Hattori, Fabrication of diffraction grating with high aspect ratio using X-ray lithography technique for X-ray phase imaging, Japanese Journal of Applied Physics, vol. 46, p. 849, 2007.
[19]D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, Demonstration of polarization-independent resonant subwavelength grating filter arrays, Opt. Lett., vol. 35, pp. 3201-3203, 2010.
[20]C. C. Liang, M. Y. Liao, W. Y. Chen, T. C. Cheng, W. H. Chang, and C. H. Lin, Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles, Optics Express, vol. 19, pp. 4768-4776, 2011.
[21]K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, The Journal of Physical Chemistry B, vol. 107, pp. 668-677, 2003.
[22]E. Hutter and J. H. Fendler, Exploitation of localized surface plasmon resonance, Advanced Materials, vol. 16, pp. 1685-1706, 2004.
[23]C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays, The Journal of Physical Chemistry B, vol. 107, pp. 7337-7342, 2003.
[24]A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, Plasmonic materials for surface-enhanced sensing and spectroscopy, Mrs Bulletin, vol. 30, pp. 368-375, 2005.
[25]Z. Sun, X. Zuo, and Q. Lin, Plasmon-induced nearly null transmission of light through gratings in very thin metal films, Plasmonics, vol. 5, pp. 13-19, 2010.
[26]J. Zhang, L. K. Cai, W. L. Bai, and G. F. Song, Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide, Optics Letters, vol. 35, pp. 3408-3410, Oct 15 2010.
[27]S. S. Xiao and N. A. Mortensen, Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays, Optics Letters, vol. 36, pp. 37-39, Jan 1 2011.
[28]H. P. Paudel, M. F. Baroughi, and K. Bayat, Plasmon resonance modes in two-dimensional arrays of metallic nanopillars, Journal of the Optical Society of America B-Optical Physics, vol. 27, pp. 1693-1697, Sep 2010.
[29]Z. Zhang, K. Park, and B. J. Lee, Surface and magnetic polaritons on two-dimensional nanoslab-aligned multilayer structure, Opt. Express, vol. 19, pp. 16375-16389, 2011.
[30]L. P. Wang and Z. M. Zhang, Phonon-mediated magnetic polaritons in the infrared region, Opt. Express, vol. 19, pp. A126-A135, 2011.
[31]L. Wang and Z. Zhang, Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics, Applied Physics Letters, vol. 100, p. 063902, 2012.
[32]B. Lee, Y. Chen, and Z. Zhang, Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared, Journal of Computational and Theoretical Nanoscience, vol. 5, pp. 201-213, 2008.
[33]A. Hessel and A. A. Oliner, A New Theory of Wood's Anomalies on Optical Gratings, Appl. Opt., vol. 4, pp. 1275-1297, 1965.
[34]Y. B. Chen and M. J. Huang, Infrared reflectance from a compound grating and its alternative componential gratings, Journal of the Optical Society of America B-Optical Physics, vol. 27, pp. 2078-2086, Oct 2010.
[35]Z. P. Yang, M. L. Hsieh, J. A. Bur, L. Ci, L. M. Hanssen, B. Wilthan, P. M. Ajayan, and S. Y. Lin, Experimental observation of extremely weak optical scattering from an interlocking carbon nanotube array, Applied Optics, vol. 50, pp. 1850-1855, May 1 2011.
[36]X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes, Nanotechnology, vol. 20, May 27 2009.
[37]H. J. Lee, A. C. Bryson, and Z. M. Zhang, Measurement and modeling of the emittance of silicon wafers with anisotropic roughness, International Journal of Thermophysics, vol. 28, pp. 918-933, Jun 2007.
[38]E. Teran, E. R. Mendez, S. Enriquez, and R. Iglesias-Prieto, Multiple light scattering and absorption in reef-building corals, Applied Optics, vol. 49, pp. 5032-5042, Sep 20 2010.
[39]S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, Surface-plasmon-induced light absorption on a rough silver surface, Applied Physics Letters, vol. 98, Jan 3 2011.
[40]S. Kajita, T. Saeki, N. Yoshida, N. Ohno, and A. Iwamae, Nanostructured Black Metal: Novel Fabrication Method by Use of Self-Growing Helium Bubbles, Applied Physics Express, vol. 3, Aug 2010.
[41]M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings, Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 12, pp. 1068-1076, May 1995.
[42]K. Fu, Y.-B. Chen, P. F. Hsu, Z. M. M. Zhang, and P. J. Timans, Device scaling effect on the spectral-directional absorptance of wafer's front side, International Journal of Heat and Mass Transfer, vol. 51, pp. 4911-4925, Sep 2008.
[43]Y.-B. Chen, Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications, Optics Express, vol. 17, pp. 3130-3140, Mar 2 2009.
[44]Y.-B. Chen and M.-J. Huang, Infrared reflectance from a compound grating and its alternative componential gratings, Journal of the Optical Society of America B-Optical Physics, vol. 27, pp. 2078-2086, Oct 2010.
[45]C.-J. Chen, J.-S. Chen, and Y.-B. Chen, Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton, Journal of the Optical Society of America B-Optical Physics, vol. 28, pp. 1798-1806, Aug 2011.
[46]J. B. Yang and Z. P. Zhou, Double-structure, bidirectional and polarization-independent subwavelength grating beam splitter, Optics Communications, vol. 285, pp. 1494-1500, Mar 15 2012.
[47]D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, Demonstration of polarization-independent resonant subwavelength grating filter arrays, Optics Letters, vol. 35, pp. 3201-3203, Oct 1 2010.
[48]Y.-B. Chen and K.-H. Tan, The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters, International Journal of Heat and Mass Transfer, vol. 53, pp. 5542-5551, Nov 2010.
[49]H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, Optical transmission through double-layer metallic subwavelength slit arrays, Optics Letters, vol. 31, pp. 516-518, Feb 15 2006.
[50]J. C. M. Garnett, Colours in Metal Glasses and in Metallic Films, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 203, pp. 385-420, January 1, 1904 1904.
[51]D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, Ann. Phys., vol. 24, pp. 636-679, 1935.
[52]Z. M. Zhang, Nano/microscale heat transfer. New York, NY: McGraw-Hill, 2007.
[53]B. J. Lee, V. P. Khuu, and Z. M. Zhang, Partially coherent spectral transmittance of dielectric thin films with rough surfaces, Journal of Thermophysics and Heat Transfer, vol. 19, pp. 360-366, Jul-Sep 2005.
[54]J.-M. Jin, The finite element method in electromagnetics, 2nd ed. New York: John Wiley & Sons, 2002.
[55]Y. Kane, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, Antennas and Propagation, IEEE Transactions on, vol. 14, pp. 302-307, 1966.
[56]R. L. Burden and J. D. Faires, Numerical analysis, 8th ed. Belmont, CA: Thomson Brooks/Cole, 2005.
[57]N. Corporation. (2011, May 21). Motorized Dual Source Illuminator, 115 VAC. Available: http://search.newport.com/?q=*&x2=sku&q2=7341
[58]N. Corporation. (2012, May 21). 100 Watt Quartz Tungsten Halogen. Available: http://search.newport.com/?q=*&x2=sku&q2=6333
[59]N. Corporation. (2012, May 21). IR Emitter, 140 W Element. Available: http://search.newport.com/?q=*&x2=sku&q2=6363
[60]N. Corporation. (2012, May 21). Lamp Mount, QTH, 7340 Series Illuminator. Available: http://search.newport.com/?q=73902
[61]N. Corporation. (2012, May 21). Lamp Mount, 140 W IR Element, 7340 Series Illuminator. Available: http://search.newport.com/?q=73906
[62]N. Corporation. (2012, May 21). Constant Current Power Supply. Available: http://search.newport.com/?q=*&x2=sku&q2=68938
[63]N. Corporation. (2012, May 21). Focusing Lens Assembly, Req. 1 inch Dia Lens, 1.5 inch Series Flanges. Available: http://search.newport.com/?q=*&x2=sku&q2=77330
[64]N. Corporation. (2012, May 21). Focusing Lens Assembly, 1.5 Inch Series, 4in FL, F/3.1, 1.3in Clear Aperture. Available: http://search.newport.com/?q=6198
[65]N. Corporation. (2012, May 21). Focusing Lens Assembly, 1.5 Inch Series, 6in FL, F/4.6, 1.3in Clear Aperture. Available: http://search.newport.com/?q=6199
[66]N. Corporation. (2012, May 21). Motorized Filter Wheel. Available: http://search.newport.com/?q=*&x2=sku&q2=74010
[67]N. Corporation. (2012, May 21). Order Sorting Filter, 25.4mm Diameter, 309nm Cut-On, 325-2700nm Transmittance. Available: http://search.newport.com/?q=51250
[68]N. Corporation. (2012, May 21). Order Sorting Filter, 25.4mm Diameter, 400nm Cut-On, 415-2750nm Transmittance. Available: http://search.newport.com/?q=*&x2=sku&q2=51272
[69]N. Corporation. (2012, May 21). Order Sorting Filter, 25.4mm Diameter, 495nm Cut-On, 520-2750nm Transmittance. Available: http://search.newport.com/?q=*&x2=sku&q2=51292
[70]N. Corporation. (2012, May 21). Order Sorting Filter, 25.4mm Diameter, 665nm Cut-On, 675-2750nm Transmittance. Available: http://search.newport.com/?q=*&x2=sku&q2=51330
[71]N. Corporation. (2012, May 21). Order Sorting Filter, 25.4mm Diameter, 830nm Cut-On, 850-2750nm Transmittance. Available: http://search.newport.com/?q=*&x2=sku&q2=51352
[72]N. Corporation. (2012, May 21). Long Wave Pass Filter, 25.4 mm Diameter, 1000±7 nm Cut-On, 1020 to 2200 nm. Available: http://search.newport.com/?q=10LWF-1000-B
[73]N. Corporation. (2012, May 21). Cornerstone™ 260 1/4 m Monochromator, GPIB & RS-232. Available: http://search.newport.com/?q=*&x2=sku&q2=74100
[74]N. Corporation. (2012, May 21). Cornerstone 260 Triple Grating, Ruled, 1200l/mm, 750nm Blaze, 450-1400nm Primary. Available: http://search.newport.com/?q=*&x2=sku&q2=74064
[75]N. Corporation. (2012, May 21). Cornerstone 260 Triple Grating, Ruled, 600 l/mm, 200nm Blaze, 180-500nm Primary. Available: http://search.newport.com/?q=*&x2=sku&q2=74065
[76]N. Corporation. (2012, May 21). Cornerstone 260 Triple Grating, Ruled, 600l/mm, 1600nm Blaze, 900-2800nm Primary. Available: http://search.newport.com/?q=*&x2=sku&q2=74069
[77]N. Corporation. (2012, May 21). Micrometer Driven Variable Slit, 4 µm to 3mm Width, 2 to 15 mm Height. Available: http://search.newport.com/?q=*&x2=sku&q2=74001
[78]Thorlabs. (2012, May 21). Thorlabs.com - LB4096 f = 50.0 mm, Ø1 UV Fused Silica Bi-Convex Lens, Uncoated. Available: http://www.thorlabs.hk/thorProduct.cfm?partNumber=LB4096
[79]Thorlabs. (2012, May 21). Thorlabs.com - LA4380 f = 100.0 mm, Ø1 UV Fused Silica Plano-Convex Lens. Available: http://www.thorlabs.hk/thorProduct.cfm?partNumber=LA4380
[80]Thorlabs. (2012, May 21). Thorlabs.com - LA4158 f = 250.0 mm, Ø1 UV Fused Silica Plano-Convex Lens. Available: http://www.thorlabs.hk/thorProduct.cfm?partNumber=LA4158
[81]Thorlabs. (2012, May 21). Thorlabs.com - MC2000 Optical Chopper System with MC1F10 10-slot (36°) Chopper Blade. Available: http://www.thorlabs.hk/thorProduct.cfm?partNumber=MC2000
[82]Thorlabs. (2012, May 21). Thorlabs.com - MC1F10 10 Slot Blade for Optical Chopper, 20 to 1,000 Hz. Available: http://www.thorlabs.hk/thorProduct.cfm?partNumber=MC1F10
[83]T. S. Corp, Title, unpublished|.
[84]V. R. Weidner and J. J. Hsia, Reflection Properties of Pressed Polytetrafluoroethylene Powder, Journal of the Optical Society of America, vol. 71, pp. 856-861, 1981.
[85]H. Photonics. (2012, May 22). Hamamatsu Photonics | Si photodiode (S2281-01). Available: http://jp.hamamatsu.com/products/sensor-ssd/pd041/pd042/pd044/S2281-01/index_en.html
[86]T. J. Technologies. (2012, May 22). Teledyne Judson Technologies: Germanium Detectors. Available: http://www.teledynejudson.com/germanium.html
[87]S. Recovery. (2012, May 22). 181. Available: vhttp://www.signalrecovery.com/our-products/preamplifiers/181.aspx
[88]S. Recovery. (2012, May 22). 7265. Available: http://www.signalrecovery.com/our-products/lock-in-amplifiers/7265.aspx
[89]S. Recovery. (2012, May 22). NI PCI-4462 - 24-Bit, 204.8 kS/s, 4 Inputs - National Instruments. Available: http://sine.ni.com/nips/cds/view/p/lang/en/nid/202237
[90]T. Scientific. (2012, May 23). Nicolet 6700 FT-IR Spectrometer Thermo Scientific. Available: http://www.thermoscientific.com/ecomm/servlet/productsdetail_11152_L10738_82243_11961710_-1
[91]Y. C. Lee and C. Y. Chiu, Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching, Journal of Micromechanics and Microengineering, vol. 18, Jul 2008.
[92]C. W. Hsu, Z. D. Chou, and G. J. Wang, Fabrication of High-Aspect-Ratio Alumina-Nickel Coaxial Nanorod Array by Electrodeposition, Journal of Microelectromechanical Systems, vol. 19, pp. 849-853, Aug 2010.
[93]N. Otsu, A Threshold Selection Method from Gray-Level Histograms, Ieee Transactions On Systems Man And Cybernetics, vol. 9, pp. 62-66, 1979.
[94]M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging, vol. 13, pp. 146-168, Jan 2004.
[95]M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk, Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films, Thin Solid Films, vol. 326, pp. 72-77, Aug 4 1998.
[96]Y. Inoue, J. Matsui, H. Ishikawa, H. Tsuda, and O. Takai, Electrochromic phenomenon in indium–tin oxide thin films deposited by RF magnetron sputtering, Thin Solid Films, vol. 518, pp. S6-S9, 2010.
[97]C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays, Journal of Physical Chemistry B, vol. 107, pp. 7337-7342, Jul 31 2003.
[98]J. Parsons, E. Hendry, J. R. Sambles, and W. L. Barnes, Localized surface-plasmon resonances and negative refractive index in nanostructured electromagnetic metamaterials, Physical Review B, vol. 80, Dec 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top