跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許佳揚
研究生(外文):Chia-YangHsu
論文名稱:曲線座標系統之逆向熱傳導問題的初始值預測
論文名稱(外文):Estimation of Initial Value for Inverse Heat Conduction Problem in Curvilinear Coordinate System
指導教授:陳寒濤陳寒濤引用關係
指導教授(外文):Han-Taw Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:82
中文關鍵詞:逆向熱傳導曲線座標初始值預測
外文關鍵詞:InverseHeat ConductionEstimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
本文探討熱傳導問題在初始值為未知時,以多項式函數展開假設未知的初始條件,並在某一特定量測點搭配數個不同時間求取展開式中各項係數值,進而求得問題之初始值。
本文將探討在圓柱座標系統中,量測點位置對於所求取之值的準確性、量測時間間距對於初始值預測的影響、並以中央差分法( Central difference method )計算結果模擬不同量測時間下所測得之溫度值,以及當具有量測誤差時所對應求取的初始值影響。結果顯示,當量測時間較短時,且所選取量測點的溫度隨時間變化較劇烈時,不論是否有量測誤差,其皆可獲得好的預測結果;而當量測時間較長時,但初始值為一平滑曲線時,可獲得良好結果,但若初始值為不連續函數或是在空間域內變化較劇烈時,所求得之值相對較差,故本文將此一情形配合數段多項式曲線即可求取良好結果。

The study discusses the heat conduction problem when the initial value is unknown. Using the polynomial expansion method to express unknown initial value, at a particular point, we take several measured temperature value at different times to solve the coefficients of the expansion in order to get the initial value.
The study investigates into the accuracy of estimation value analyzed at different measurement point in cylindrical coordinate, the effects of how long the time we analysis, estimates the initial value using the measurement value at different time, the results of the central difference method as a simulation temperature value and the impact of estimation of initial value with measurement error. The results show that, in short time, we can get a good estimation in a particular measurement points that the temperature change larger with time whether or not the measurement error; on the other hand, in long time, we can also get good results for the initial value is a smooth curve. If the initial value is not a smooth curve or changes rapidly, we would not get great results, and we use several polynomial expansions to improve our estimation. As a result, the inverse algorithm of the study presents a good accuracy.

摘要 I
Abstract II
目錄 IV
圖目錄 VI
符號說明 VIII
第一章 緒論 1
1-1 研究背景 2
1-2 文獻回顧 3
1-3 研究動機與目的 5
1-4 本文架構 6
第二章 一維座標系統之熱傳導問題 8
2-1 前言 8
2-2 理論分析 9
2-3 數值方法分析 13
2-4 逆算問題之解析方法 17
第三章 二維座標系統之熱傳導問題 64
3-1 前言 64
3-2 理論分析 64
3-3 逆算問題之解析方法 66
3-4 結果與討論 69
第四章 綜合討論與未來發展方向 77
4-1 綜合討論 77
4-2 未來發展方向 78
參考文獻 79

[1]Han, H., Ingham, D. B., Evans, B. E., Remson, I., 1983, “The Boundary Element Method for the Solution of the Backward Heat Conductiom Equation, Journal of Computational Physics, Vol. 116, No. 2, pp. 292-299.
[2]Mera, N. S., Elliott, L., Ingham, D. B., Lesnic, D., 2001, “An Iterative Boundary Element Method for Solving the One-Dimensional Backward Heat Conduction Problem, International Journal of Heat and Mass Transfer, Vol. 44, No. 10, pp. 1937-1946.
[3]Mera, N. S., Elliott, L., Ingham, D. B., 2002, “An Inversion Method with Decreasing Regularization for the Backward Heat Conduction Problem, Numerical Heat Transfer, Part B, Vol. 42, No. 3, pp. 215-230.
[4]Jourhmane, M., Mera, N. S., 2002, “An Iterative Algorithm for the Backward Heat Conduction Problem Based on Variable Relaxation Factors, Inverse Problems in Science and Engineering, Vol. 10, No. 4, pp. 293-308.
[5]Muniz, W. B., de Campos Velho, F. M., 1999, “A comparison of Some Inverse Methods for Estimating the Initial Condition of the Heat Equation, Journal of Computational and Applied Mathematics, Vol.103, No. 1, pp. 145-163.
[6]Muniz, W. B., Ramos, F. M., de Compos Velho, H. F.,2000, “Entropy and Tikhonov-Based Regularization Techniques Applied to the Backward Heat Equation, Computers and Mathematics with Applications, Vol. 40, No. 8, pp. 1071-1084.
[7]Kirkup, S. M., Wadsworth, M., 2002, “Solution of Inverse Diffusion Problems by Operator-Splitting Methods, Applied Mathematical Modeling, Vol. 26, No. 10, pp. 1003-1018.
[8]Liu, J. J., 2002, “Numerical Solution of Forward and Backward Problem for 2-D Heat Conduction Equation, Journal of Computational and Applied Mathematics, Vol. 145, No. 2, pp. 459-482.
[9]Iijima, K., 2004, “Numerical Solution of Backward Heat Conduction Problems by a High Order Lattice-Free Finite Difference Method, Journal of the Chinese Institute of Engineers, Vol. 27, No. 4, pp. 611-620.
[10]Mera, N. S., 2005, “The Method of Fundamental Solutions for the Backward Heat Conduction Problem, Inverse Problem in Science and Engineering, Vol. 13, No. 1, pp. 65-78.
[11]Li, F. S., 2009, “Backward Solutions to Neumann and Dirichlet Problems of Heat-Conduction Equation, Applied Mathematics and Computation, Vol. 210, No. 1, pp. 211-214.
[12]李弘毅, 逆向熱傳導問題之理論與實驗研究,國科會報告 NSC 87-2212-E-211-007, 1998.
[13]Chiwiacowsky, L. D., de Campos Velho, H. F., 2003, “Different Approaches for the Solution of a Backward Heat Conduction Problem, Inverse Problems in Science & Engineering, Vol. 11, No. 6, pp. 471-494.
[14]張建仁、劉進賢,國立台灣海洋大學, 2009,利用數種創新方法研究時間反向熱傳導問題及地下水汙染源辨識問題。
[15]Liu Chein-Shan, 2011, “A Self-Adaptive LGSM to Recover Initial Condition or Heat Source of One-Dimensional Heat Conduction Equation by Using Only Minimal Boundary Thermal Data, International Journal of Heat and Mass Transfer, Vol. 54, Issue 7-8, pp. 1305-1312.
[16]Liu Chein-Shan, 2008, “An LGSM to Identify Nonhomogeneous Heat Conductivity Functions by an Extra Measurement of Temperature, International Journal of Heat and Mass Transfer, Vol. 51, Issue 9-10, pp. 2603-2613.
[17]Liu Chein-Shan, 2010, “A Two-Stage Lie-group Shooting Method (TSLGSM) to Identify Time-dependent Thermal Diffusivity, International Journal of Heat and Mass Transfer, Vol. 53, Issue 21-22, pp. 4876-4884.
[18]Liu Chein-Shan, 2010, “A High Accurate LGSM for Severly Ill-posed BHCP under a Large Noise on the Final Time Data, International Journal of Heat and Mass Transfer, Vol. 53, Issue 19-20, pp. 4132-4140.
[19]Su, R. J. and Hwuang, J. J.,1998 “Analysis of Transient Heat Transfer in a Cylindrical Pin Fin, AIAA, J. Thermophys. Heat Transfer, Vol. 12, pp. 281-283.
[20]Chapman,A. J. “Transient Heat Conduction in Annular Fins of Uniform Thickness, Chen Eng. Symp. Ser, Vol. 55, pp, 195-201, 1959.
[21]Chen, H. T. and Lin, S. Y., “Estimation of surface temperature in two-dimensional inverse heat conduction problems, Int. J. Heat Mass Transfer, Vol. 44, pp. 1455-1463, 2001.
[22]Su J. Silva Neto A.J. “Two-dimensional inverse heat conduction problem of source strength estimation in cylindrical rods, Applied Mathematical Modelling, Vol. 25, pp. 861-872, 2001.
[23]Yang, C. Y. , “Estimation of the temperature-dependent thermal conductivity in inverse heat conduction problems, Applied Mathematical Modelling, Vol. 23, pp. 469-478, 1998.
[24]謝博揚, 逆向熱傳導問題之初始值預測, 2011成功大學機械工程研究所碩士論文.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top