跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/27 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃品升
研究生(外文):Pin-ShengHuang
論文名稱:不同光照方式下牙科複合樹脂之聚合收縮探討
論文名稱(外文):Investigations of Polymerization Shrinkage of Dental Composites with Different Light-Curing Approaches
指導教授:陳元方陳元方引用關係
指導教授(外文):Yuang-Fang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:77
中文關鍵詞:數位影像相關法牙科複合樹脂聚合收縮光激發固化收縮應力有限元素法微滲漏
外文關鍵詞:digital image correlationpolymerization shrinkagelight-activated curingcontraction stressfinite element analysismicroleakage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:0
數位影像相關法(DIC)為非接觸式量測方法。搭配高放大倍率之取像系統與次像數內插演算法,可以以此精確度測微小變形。數位影像相關法目前已被應用量測牙科複合樹脂的收縮行為。複合樹脂在光激發固化的過程中會有聚合收縮現象,周圍牙齒也會受到收縮的影響而產生所謂的收縮應力,甚至造成填補脫落或填補介面的微滲漏。為了探討不同光照方式對複合樹脂聚合收縮的影響,本研究目的分為光照的強度以及光照方向,以三種方式分析複合樹脂之聚合收縮: DIC量測聚合收縮變形、有限元素法分析收縮應力、micro-CT 檢測牙齒與樹脂介面的損壞。
在光照強度的實驗中,分別以固定的光強度(500 mW/cm2)與步階光強度(100-600 mW/cm2)做比較;光照方向方面則是比較90度與45度。在照光40秒的過程中,以連續取像的方式記錄下複合樹脂聚合收縮的影像,藉由DIC的程式去計算出任一時間下收縮所產生的變形,同時定義收縮中心,由收縮中心位置的改變探討光照對整體收縮變形的影響。在收縮應力分析方面,採用有限元素法,以熱膨脹的方式模擬樹脂聚合的體積收縮。以micro-CT掃描的方式建構出3D的牙齒模型,再依照光照不同的方式時所測得收縮條件,以熱傳方式下不同溫度的改變進行模擬可得收縮應力。最後再將填補且聚合完的牙齒經過 micro-CT的掃瞄得到牙齒的剖面圖,由影像去判斷是否有發生微滲漏的情形。
由DIC 分析結果可知,在受到黏著固定的影響下,收縮方向依然為向心收縮。然而,收縮中心會較無黏著狀態偏向窩洞底部。步階光強度照光方式會使聚合反應集中在表層,導致收縮中心位置比固定光強度照光方式來得高。而45度照光方向會使得收縮中心偏移至靠近光源的位置,並改變全場的變形分布。在模擬的結果中,步階光強度的光照方式明顯降低牙齒在窩洞兩旁的收縮應力。而45度照光導致窩洞兩側受到應力差異變大,顯示收縮方向的變形改變會影響應力分布。與固定的光強度相比,步階光強度的光照所造成的裂縫面積較小,且發生裂縫區域與有限元素所得之高應力區吻合。
臨床上在操作照光固化時,需要考慮照光強度與照光方向的影響。而步階光照強度的方式將能降低牙齒所受到的收縮應力,以及改善微滲漏的現象。數位影像相關法在未來可繼續用來研究不同因素對聚合收縮的影響。

Digital image correlation (DIC) is a non-contact measurement method. With a high magnification of acquisition system and the algorithms of subpixel-interpolation, it measures the minor displacement of an object with great accuracy. This technique has been applied to the shrinkage behavior of dental composite restorations. The polymerization shrinkage of the composite occurs in the process of light-activated curing, and the tooth surrounding the resin would be pulled to cause the contraction stress or microleakage. The purpose of this study was to investigate the effects of light intensity and the light direction on the polymerization shrinkage of composite resin by three approaches: using DIC to measure the shrinkage, finite element analysis (FEA) for contraction stress, and examination of the microleakage by micro-CT.
In the experiment about light intensity, the constant intensity (500mW/cm2) and stepped intensity (100-600mW/cm2) were compared. In the light direction experiment, the 90 degree light direction and 45 degree light direction were compared. Each tooth was separately restored in nonbonding and bonding conditions. During the 40s light-curing, the shrinkage was recorded by continuous images. The DIC program was used to calculate the deformation, and defined the shrinkage center. From the position of shrinkage center changed, the effect of light on the full-field deformation was investigated. The FEA used in the analysis of contraction stress simulated the polymerization shrinkage by a thermal expansion mode. By micro-CT scanning, the 3D tooth model was constructed and used to simulate the different temperatures to obtain the contraction stress by the heat transfer. Finally, the restored and cured teeth were scanned by micro-CT to get the cross-section image, and the interfacial microleakage was determined from the images.
From the result of DIC, the shrinkage started from the surface which was irradiated with light. Under the bonding condition, the shrinkage pattern was still centrifugal. However, the shrinkage center was more closed to the cavity floor compared to nonbonding condition. The stepped light intensity caused polymerization to focus on the top surface and led to higher position of shrinkage center than the constant light intensity. The 45 degree light direction caused the shrinkage center close the light source and the shrinkage deformation was affected.
The simulation result indicated the stepped light intensity reduced the stress in the cavity walls and 45 degree light direction led to the different stresses between two cavity walls. Comparing with the constant intensity, the stepped intensity reduced the microleakage in the cavity wall and the area of debonding is smaller.
In clinical operation of light-curing, the effect of light intensity and direction need to be consider. The stepped intensity technique can be used for reducing the contraction stress in the tooth and the mcrioleakage. In the future, the DIC can continue the investigation of different factors in polymerization shrinkage.

ABSTRACT I
中文摘要 IV
誌謝 VI
LIST OF CONTNENTS VII
LIST OF FIGURES IX
LIST OF TABLES XIII
Chapter 1 Introduction 1
1.1 Composite resin restoration 1
1.2 Composition of composite resin 3
1.3 Light curing polymerization 5
1.4 Shrinkage and contraction stress 7
1.5 Literature review 10
1.6 The theorem of DIC 17
1.7 Motivation and objectives 19
Chapter 2 Materials and methods 20
2.1 Measurement of shrinkage using DIC 23
2.1.1 Experimental apparatuses for DIC 23
2.1.2 The verification of DIC 24
2.1.3 Shrinkage measurement and data analysis 25
2.1.4 Definition of parameter of analysis 27
2.2 The finite element analysis for contraction stress 29
2.1.1 The 3D model construction 29
2.1.2 Assumption and flow of simulation 31
2.1.3 The simulation of shrinkage with thermal expansion 33
2.3 Examination of microleakage 36
Chapter 3 Results 37
3.1 Deformation of shrinkage 37
3.1.1 The spatial analysis for the effect of light intensity 37
3.1.2 The temporal analysis for the effect of light intensity 42
3.1.3 The spatial analysis for the effect of light direction 45
3.1.4 The temporal analysis for the effect of light direction 51
3.2 Finite element analysis 54
3.2.1 Verifying the FEA with the deformation obtained by DIC 54
3.2.2 The effect of light intensity on stress 56
3.2.3 The effect of light direction on stress 59
3.3 Examination of microleakage 62
3.3.1 Quantification of the microleakage 64
3.3.2 The position of microleakage 65
Chapter 4 Discussion 66
4.1 The effect of light intensity 66
4.2 The effect of light direction 70
4.3 The effect of bonding condition 72
Chapter 5 Conclusion 74
Reference 75

1.Sun, R., et al., Characterisation of tribochemically assisted bonding of composite resin to porcelain and metal. Journal of Dentistry,. 28(6): p. 441-445, 2000
2.Ruyter, I.E., K. Nilner, and B. Moller, Color Stability of Dental Composite Resin Materials for Crown and Bridge Veneers. Dental Materials, 3(5): p. 246-251, 1987.
3.Vano, M., et al., The adhesion between fibre posts and composite resin cores: the evaluation of microtensile bond strength following various surface chemical treatments to posts. International Endodontic Journal, 39(1): p. 31-39, 2006.
4.Taylor, M.J. and E. Lynch, Microleakage. Journal of Dentistry, 20(1): p. 3-10, 1992.
5.Rees, J.S. and P.H. Jacobsen, The Polymerization Shrinkage of Composite Resins. Journal of Dental Research, 66(4): p. 848-848, 1987.
6.Degee, A.J., A.J. Feilzer, and C.L. Davidson, True Linear Polymerization Shrinkage of Unfilled Resins and Composites Determined with a Linometer. Dental Materials, 9(1): p. 11-14, 1993.
7.Sakaguchi, R.L., A. Versluis, and W.H. Douglas, Analysis of strain gage method for measurement of post-gel shrinkage in resin composites. Dental Materials, 13(4): p. 233-239, 1997.
8.Davidson-Kaban, S.S., et al., The effect of curing light variations on bulk curing and wall-to-wall quality of two types and various shades of resin composites. Dental Materials, 13(5-6): p. 344-352, 1997.
9.Inoue, K., et al., Effect of light intensity on linear shrinkage of photo-activated composite resins during setting. Journal of Oral Rehabilitation, 32(1): p. 22-27, 2005.
10.Atai, M. and D.C. Watts, A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dental Materials, 22(8): p. 785-791, 2006.
11.Asmussen, E. and A. Peutzfeldt, Direction of shrinkage of light-curing resin composites. Acta Odontol Scand, 57(6): p. 310-5, 1999.
12.Sato, T., et al., Application of the laser speckle-correlation method for determining the shrinkage vector of a light-cured resin. Dental Materials Journal, 23(3): p. 284-290, 2004.
13.Versluis, A., D. Tantbirojn, and W.H. Douglas, Do dental composites always shrink toward the light? Journal of Dental Research, 77(6): p. 1435-1445, 1998.
14.Feilzer, A.J., A.J. Degee, and C.L. Davidson, Setting Stresses in Composites for 2 Different Curing Modes. Dental Materials, 9(1): p. 2-5, 1993.
15.Kinomoto, Y. and M. Torii, Photoelastic analysis of polymerization contraction stresses in resin composite restorations. Journal of Dentistry, 26(2): p. 165-171, 1998.
16.Kuroe, T., et al., Contraction stress of composite resin build-up procedures for pulpless molars. Journal of Adhesive Dentistry, 5(1): p. 71-77, 2003.
17.Lutz, F., et al., Improved proximal margin adaptation of Class II composite resin restorations by use of light-reflecting wedges. Quintessence Int, 17(10): p. 659-64, 1986.
18.Watts, D.C. and A. Al Hindi, Intrinsic 'soft-start' polymerisation shrinkage-kinetics in an acrylate-based resin-composite. Dental Materials, 15(1): p. 39-45, 1999.
19.Mehl, A., R. Hickel, and K.H. Kunzelmann, Physical properties and gap formation of light-cured composites with and without 'softstart-polymerization'. Journal of Dentistry, 25(3-4): p. 321-330, 1997.
20.Chuang S.F., C.T.Y., Chang C.H., Application of digital image correlation method to study dental composite shrinkage. Strain, 44: p. 231-238, 2008.
21.Chuang, S.-F., C.-H. Chang, and T.Y.-F. Chen, Contraction behaviors of dental composite restorations - Finite element investigation with DIC validation. Journal of the Mechanical Behavior of Biomedical Materials, 4(8): p. 2138-2149, 2011.
22.T. Furukawa, K.A., Y. Morita, Polymerization Shrinkage Behavior of Light Cure Resin Compsotes in Cavities. Journal of Biomechanical Science and Engineering, 4(3): p. 356-364, 2009.
23.Chu, T.C., et al., Applications of Digital-Image-Correlation Techniques to Experimental Mechanics. Experimental Mechanics, 25(3): p. 232-244, 1985.
24.Bruck, H.A., et al., Digital Image Correlation Using Newton-Raphson Method of Partial-Differential Correction. Experimental Mechanics, 29(3): p. 261-267, 1989.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top