跳到主要內容

臺灣博碩士論文加值系統

(35.174.62.102) 您好!臺灣時間:2021/07/25 04:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱繼正
研究生(外文):Chi-ChengChiu
論文名稱:準分子雷射微細加工系統建構及微透鏡陣列之製作與應用
論文名稱(外文):Development of Excimer Laser Micromachining System for fabricating Microlens Array and Its Application
指導教授:李永春李永春引用關係
指導教授(外文):Yung-Chun Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:111
中文關鍵詞:準分子雷射微細加工拖曳式雷射加工法非球面微透鏡陣列無光罩式光束筆直寫微影技術
外文關鍵詞:Excimer laser MicromachiningLaser scanning methodAspheric microlens arrayMask-less Beam Pen lithography
相關次數:
  • 被引用被引用:2
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本論文首先於實驗室中建構一套完整的準分子雷射微細加工系統,包括硬體架構與軟體系統整合,以執行高精度與高複雜度的準分子雷射微細加工;之後針對大面積、非球面的微透鏡陣列,發展二種新形式的雷射拖曳式加工法,分別以兩軸與三軸拖曳式加工的方式,在高分子材料表面製作出棋盤式排列與六角最密堆積排列的微透鏡陣列結構,特點是所設計與加工之非球面微透鏡可具有特殊的光學特性;最後,根據所製作之非球面微透鏡的光學聚焦能力,將非球面透鏡陣列應用於本論文提出的一種新式無光罩式光束筆陣列直寫微影技術中,為用於小線寬 (1~2微米)、大面積 (數個平方公分以上)、高產率、任意複雜圖形的黃光微影製程。
在架構完整的準分子雷射微細加工系統上,本論文由雷射光開始,加入一系列的光學元件以均勻化雷射光束的能量分布,並建構一高解析度的十倍倍縮投射鏡組;此外,以伺服步進馬達驅動的六軸精密運動平台,控制光罩與試片的可程式多軸同步運動,達到微細加工三維微結構的目的。在製作具有特殊應用的陣列式三維微結構部分,本論文提出了兩軸與三軸雷射拖曳加工法,並在高分子材料(聚碳酸酯)的表面製作出10 × 10的非球面微透鏡陣列,微透鏡的直徑為100微米。本論文提出一種新的光罩設計思維,利用數值分析方式決定光罩圖形,製作出所需要的微透鏡形貌。本論文以實驗證明此一加工方法的可行性,且形貌加工精確度可達到正負0.5微米的水準,表面粗糙度也能夠達到光學應用的要求。所製作之非球面微透鏡的加工表面形貌符合預先設計的光學曲面,因此能夠將平行光束聚焦光點的大小壓縮至鏡片的繞射極限。
最後,本論文提出了一種新式的無光罩式光束筆直寫微影技術,乃利用二軸雷射拖曳加工技術所製作出的非球面透鏡陣列,應用於紫外光光束下產生近乎0.85微米的聚焦光點,進而在光阻層上定義出接近光點大小的陣列圖形。所製作之非球面透鏡的面積已提昇為1.3公分 × 1.3公分,且形貌的均勻度並不會因為大面積的加工而產生誤差,因此可以執行大面積的無光罩光束筆直寫微影技術。實驗中配合精密位移平台在塗有光阻的矽基板上曝出具有規則排列的圖形,並藉由金屬舉離法成功的將金屬定義在矽基板的表面,其特徵尺寸約為1.8微米。

This dissertation first constructs a complete excimer laser micromachining system for new method of laser machining of microstructure. Two laser machining methods based on the concept of bi-axial and tri-axial laser scanning have been developed for fabricating large-area of aspheric microlens arrays. Based on these aspheric microlens arrays, a mask-less beam pen lithography had been developed for high throughput micro-patterning of complicated patterns with a line-width of 1 to 2 μm and a patterned area larger than few cm2.
The laboratory-built excimer laser micromachining system consists of a KrF 248 nm laser source, a laser beam reshaping optical system, a 10X de-magnifying projection lens system, and a six-axis servo-controlled procession movement stages system. For large-area fabrication of arrays of micolenses with a pre-designed profile and a specific optical function, a bi-axial and a tri-axial laser scanning methods have been developed. A novel and rigorous analysis on how to design the contour mask pattern to achieve desired machined surface profiles are introduced. Experiments have been carried out and 10 × 10 arrayed microlenses are machined on a polycarbonate substrate with a lens aperture of 100 μm. Machined profile accuracy is better than ±0.5 μm and machined surface roughness meets the specification of optical applications. Arrayed microlenses with a profile for minimizing their focal spot sizes have been obtained.
Based on the fabricated aspheric microlens arrays, a mask-less beam pen lithography is developed. By using these aspheric microlenses to focus a UV light into an array of small focal spots, one can programmably pattern a photo-resist (PR) layer and therefore achieve a large-area photolithography patterning with a small line-width. The area size of microlens arrays used for this mask-less beam pen lithography is 1.3 × 1.3 cm2 with a designed UV focal spot size of 0.85 μm. After UV exposure, PR developing, and metallic thin film lift-off process, a dense dot-array pattern is obtained with a smallest dot diameter of 1.8 μm.

摘要......................................................I
Abstract.................................................III
致謝.......................................................V
Table of Contents.........................................VI
Caption of Figures........................................IX
List of Tables............................................XV
Nomenclatures............................................XVI
Chapter 1 Introduction...............................................1
1.1 Characteristics of excimer laser ......................1
1.2 Applications of excimer laser..........................3
1.3 Excimer laser micromachining method....................6
1.4 Research motivation and objectives....................10
1.5 Thesis organization...................................13
Chapter 2 Development of Excimer Laser Micromachining System....................................................15
2.1 Introduction of excimer laser micromachining system...15
2.2 The 248 nm KrF excimer laser source...................16
2.3 Laser beam reshaping optical system...................18
2.3.1 Attenuator..........................................19
2.3.2 Cylindrical telescope system for shape modulation...21
2.3.3 Homogenizer system beam and energy re-constructed...24
2.3.4 Projection lens system .............................27
2.4 Precise automatic moving stage construction...........29
2.5 Machining system integration..........................31
Chapter 3 Fabricating of Aspheric Microlens Array by Bi-Axial Laser Scanning Method...............................40
3.1 Introduction of excimer laser bi-axis scanning method ..........................................................40
3.2 Analysis and modeling of laser scanning using an optimal contour mask..............................................43
3.3 Fabricating aspheric microlens array with focal spot size close to optical diffraction limit...................52
Chapter 4 Fabricating Hexagonally Arrayed Microstructures by Tri-Axial Laser Scanning Method...........................63
4.1 Introduction of excimer laser tri-axial scanning method ..........................................................63
4.2 Analysis and modeling of tri-axial laser scanning method ..........................................................66
4.3 Fabricating of designed axially symmetric microstructures...........................................71
4.4 Fabricating aspheric microlens array for light focusing..................................................79
Chapter 5 Mask-less Beam Pen Lithography Using Aspheric Microlens Array...........................................86
5.1 Introduction of mask-less beam pen lithography........86
5.2 Fabricating aspheric mcirolens array for mask-less beam pen lithography...........................................91
5.3 Experimental results of mask-less beam pen lithography...............................................99
Chapter 6 Conclusion.....................................103
6.1 Summary..............................................103
6.2 Future work .........................................105
References...............................................107
[1]T. H Maiman, “Stimulated optical radiation in ruby, Nature, vol. 187, pp. 493-494, 1960.
[2]N. G. Basov, V. A. Danilychev, Y. M. Popov, D. D. Khodkevich, “Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam, JETP Lett., vol. 12, pp. 329-331, 1970.
[3]E. C. Harvey, P. T. Rumsby, M. C. Gower, S. Mihailov and D. Thomas, “Excimer lasers for micromachining, Microengineering and Optics, IEE Colloquium, pp. 1/1-1/4, 1994.
[4]R. C. Crafer and P. J. Oakley, Laser Processing in Manufacturing (New York: CHAPMAN & HALL, 1993).
[5]C. R. Munnerlyn, S. J. Koons and J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery, J. Cataract. Refract. Surg., vol. 14, pp. 46-52, 1988.
[6]T. Ito and S. Okazaki, “Pushing the limits of lithography, Nature, vol. 406, pp. 1027-1031, 2000.
[7]K. Jain, C. G.. Willson and B. J. Lin, “Ultrafast deep UV lithography with excimer lasers, Electron Device Letters, IEEE, vol. 3, pp. 53-55, 1982.
[8]J. Arnold, U. Dasbach, W. Ehrfeld, K. Hesch and H. Löwe, “Combination of excimer laser micromachining and replication processes suited for large scale production, Appl. Surf. Sci., vol. 86, pp. 1-4, 1995.
[9]K. Naessens, H. Ottevaere, P. V. Daele and R. Baets, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation, Appl. Surf. Sci., vol. 208-209, pp. 159-164, 2003.
[10]X. Zhang, C. P. Grigoropoulos and D. J. Krajnovich, “Excimer laser projection micromachining of polyimide thin films annealed at different temperatures, IEEE Trans. Compon. Packaging Technol., vol. 19, pp. 201-213, 1996.
[11]R. Srinivasan, “Kinetics of the ablative photodecomposition of organic polymers in the far ultraviolet (193 nm), J. Vac. Sci. Technol. B, vol. 1, pp. 923-926, 1983.
[12]S. N. Bagayev, A. M. Razhev, V. V. Chernikh and A. A. Zhupikov, “Perspectives of using the 223-nm wavelength of the KrCl excimer laser for refractive surgery and for the treatment of some eye diseases, Proc. SPIE Int. Soc. Op: Eng., vol. 3908, pp. 138-145, 2000.
[13]J. H. Brannon, “Excimer-laser ablation and etching, Circuits and Devices Mag. IEEE, vol. 6, pp. 18-24, 1990.
[14]P. E. Dyer and J. Sidhu, “Excimer laser ablation and thermal coupling efficiency to polymer films, J. Appl. Phys., vol. 57, pp. 1420-1422, 1985.
[15]T. A. Znotins, D. Poulin and J.Reid, “Excimer laser: an emerging technology in materials process, Laser Focus/Electro-Optics, vol. 23, pp. 47-52, 1988.
[16]M. C. Gower, “Industrial applications of laser micromachining, Opt. Express, vol. 7, 56-67, 2000.
[17]G. P. Behrmann, and M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements, Appl. Opt., vol. 36, pp. 4666-4674, 1997.
[18]C. J. Hayden, “Three-dimensional excimer laser micromachining using greyscale masks, J. Micromech. Microeng., vol. 13, pp. 599-603, 2003.
[19]C. H. Tien, Y. E. Chien, Y. Chiu and H. D. Shieh, “Microlens array fabricated by excimer laser micromachining with gray-tone photolithography, Jpn. J. Appl. Phys., vol. 42, pp. 1280-1283, 2003.
[20]K. Zimmer, D. Hirsch and F. Big1, “Excimer laser machining for the fabrication of analogous microstructures, Appl. Surf. Sci., vol. 96-98, pp. 425-429, 1996.
[21]N.H. Rizvi, “Production of novel 3D microstructures using excimer laser mask projection techniques, Proc. SPIE Int. Conference: Design, Test and Microfabrication of MEMS and MOEMS, vol. 3680. pp. 546-552, 1999.
[22]K. Suzuki, M. Matsuda, T. Ogino, N. Hayashi, T. Terabayashi and K. Amemiya, “New Developments and Applications in the Production of 3D Micro-structures by Laser Micro-machining, Proc. SPIE Int Conference: Photonic Systems and Applications in Defense and Manufacturing, vol. 3898, pp. 240-249, 1999.
[23]H. Hocheng and K. Y. Wang, “Analysis and fabrication of minifeature lamp lens by excimer laser micromachining, Appl. Optics, vol. 46, pp. 7184-7189, 2007.
[24]S. Y. Wang, C. S. Huang, H. Y. Chou, T. Y. Le and R. S. Chang, “Improvement on the surface roughness of micro lens array in the excimer laser machining process, Proc. SPIE Int. Conference: MOEMS and Miniaturized Systems II, vol. 4546, pp.146-54, 1999.
[25]K. Zimmer, A. Braun and F. Bigl, “Combination of different processing methods for the fabrication of 3D polymer structures by excimer laser machining, Appl. Surf. Sci., vol. 154–155, pp. 601-604, 2000.
[26]L. Cohen and M. Schneider, “Microlenses for coupling junction lasers to optical fibers, Appl. Opt., vol. 13, pp. 89-94, 1974.
[27]M. T. Gale, J. Pedersen, H. Schütz, H. Povel, A. Gandorfer, P. Steiner and P. N. Bernasconi, “Active alignment of replicated microlens arrays on a charge-coupled device imager, Opt. Eng., vol. 36, pp. 1510-1517, 1997.
[28]H. Sankur, E. Motamedi, R. Hall, W. J. Gunning and M. Khoshnevisan, “Fabrication of refractive microlens arrays, Proc. SPIE Int. Conference: Micro-Optics/Micromechanics and Laser Scanning and Shaping, vol.2383, pp. 179-183, 1995.
[29]N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass, Appl. Opt., vol. 24, pp. 2520-2525, 1985.
[30]Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays, Appl. Opt., vol. 27, pp. 1281-1284 1988.
[31]M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens array, Opt. Eng., vol. 33, pp. 3547-3551, 1994.
[32]D. L Macfarlane, V. Narayan, T. Chen, W. R. Cox and D. J. Hayes, “Microjet fabrication of microlens array, IEEE Photo Technol. Lett., vol. 6, pp. 1112-1114, 1994.
[33]S. Zlolkowski, “Contact less embossing of micro lenses a parameter, Opt. Eng., vol. 42, 1451-1455, 2003.
[34]Z. BalP, T. Feurer, D. L. Callahan and R. Sauerbrey, “Thermal and mechanical coupling between successive pulses in KrF-excimer-laser ablation of polyimide, Appl. Phys. A, vol. 62, pp. 203-211, 1996.
[35]T. Lippert, J. T. Dickinson, S. C. Langford, H. Furutani, H. Fukumura, H. Masuhara, T. Kunz and A. Wokaun, “Photopolymers designed for laser ablation - photochemical ablation mechanism, Appl. Surf. Sci., vol. 127-129, pp. 117-121, 1998.
[36]Y. C. Lee, C. M. Chen and C.Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructures with continuous surface profiles, Sens. Actuator A-Phys., vol. 117, pp. 349-355, 2005.
[37]Y. C. Lee and C.Y. Wu, “Excimer laser micromachining of aspheric microlenses with precise surface profile control and optimal focusing capability, Optics and Lasers in Engineering, Opt. Lasers Eng., vol. 45, pp. 116-125, 2007.
[38]Y. C. Lee, C. M. Chen and C.Y. Wu, “Spherical and aspheric microlenses Fabricated by Excimer Laser LIGA-like Process, ASME, J. Manuf. Sci. Eng., vol. 129, pp. 126-34, 2007.
[39]C. C. Chiu and Y. C. Lee, “Fabricating of aspheric micro-lens array by excimer laser micromachining, Opt. Lasers Eng., vol. 49, pp. 1232-1237, 2011.
[40]S. Y. Wang, “Computer simulation for the fabrication of hexagonal micro lens arrays by use of the dragging process with an excimer laser, Opt. Express, vol. 13, pp. 5600-5607, 2005.
[41]C. C. Chiu and Y. C. Lee, “Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser scanning method, Opt. Express, vol. 20, pp. 5922-5935, 2012.
[42]A. Masters and T. Geuking, “Beam-shaping optics expand excimer-laser applications, Laser focus World, 2005.
[43]Y. Ozaki and K. Takamoto, “Cylindrical fly’s eye lens for intensity redistribution of an excimer laser beam, Appl. Opt., vol. 28, pp. 106-110, 1989.
[44]S. Y. Wang, “Simulated enhancement of the axial symmetry of a micro lens array with a modified mask by using an excimer laser scanning process, J. Micromech. Microeng., vol. 16, pp. 631-639, 2006.
[45]J. A. Nelder and R. Mead, “A simplex method for function minimization, Comput. J., vol. 7, pp. 308-313, 1965.
[46]R. Kingslake and R. Barry Johnson, Lens design fundamentals (Academic Press, 1978).
[47]M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables (New York: Dover, 1965).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top