( 您好!臺灣時間:2021/07/27 13:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Development of an Adapted Computer ATD Model for 3-year-old Taiwanese Children
指導教授(外文):T.J. Huang
外文關鍵詞:child ATDfinite element modelimpact biomechanical datascale factors
  • 被引用被引用:1
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
由於三歲兒童的生物動態反應資料闕如,本研究將50%成人男性自願者的相關資料透過縮放理論得到三歲兒童動態反應資料。本研究透過縮放理論得到頭頸部的尺寸、頭部加速度、頸部角度、力矩、週期等縮放係數。得到兒童的縮放係數後,透過有限元素電腦模擬軟體,可將現有的Hybrid III 50%成人男性人偶模型,依其縮放係數,縮放成三歲兒童Hybrid III模型及台灣三歲兒童的有限元素模型兩種。將此兩種兒童頭頸部模型進行做生物擬真性驗證,並比較其試驗結果,最後應用模型進行滑車實驗模擬,並且評估在撞擊過程中兒童所受到的傷害。研究結果顯示,台灣三歲兒童與Hybrid III三歲兒童的頭部皆具有生物擬真性。
Children play a crucial role for the development of a country in the future. Therefore, the protection of children to avoid accidental injuries usually is one of important works for many countries. Taiwan is no exception. Car accident and falling are two major causes for child’s accidental injury. Child anthropomorphic test device (ATD) is commonly utilized in automobile industries. Since a child ATD can replicate the human response during impact. As a matter of fact, the use of a dummy should be able to apply in the field of safety child research. However, the physical dummy is an expensive equipment. The alternative way to replace physical dummy is to develop a computer model. In the thesis, the main objective is to develop a three-year-old child dummy computer finite element model.
Since some impact biomechanical data of children are not available currently, a scaled-down technique is applied to estimate the data based on 50% adult male data in this study. By comparing the anthropometry between child and adult male, the geometry scale factors can be obtained. Based on the fundamental theory of mechanics, the impact biomechanical data of children can be estimated by using these scale factors. Then, an adapted 3-year-old child finite element model can be developed from the Hybrid III 50% male dummy according to above scaling data. Since the size of a Taiwanese child is different from his/her American counterpart, a 3-year-old Taiwanese child ATD model is also developed in this study. Head and neck are two major regions for child accidents. Therefore, the calibration simulations are conducted to validate both model’s biofidelity in this study. The results from simulations are similar to above estimated biomechanical data. Accordingly, two new models are biofidelic in head and neck. Finally, a sled test is performed as an example by using the newly developed model in the study to measure the child’s safety during impact.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 IX
符號說明 XII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 5
1.2.1 碰撞人偶簡介 5
1.2.2 電腦數值模擬 7
1.3 研究目的 9
1.4 論文架構 9
第二章 研究背景 12
2.1 生物擬真性的測試方法 12
2.1.1頭部墜落測試 12
2.1.2 頸部單擺測試 13
2.2 傷害評估 17
2.3 縮放理論 20
2.3.1 頭部縮放係數 21
2.3.2 頸部縮放係數 24
2.3.3 軀幹縮放係數 27
2.3.4 四肢縮放係數 27
2.3.5 楊氏係數縮放係數 28
第三章 縮放係數與動態反應區間 30
3.1 兒童人體計測 30
3.2 Hybrid III三歲兒童 30
3.2.1 頭部尺寸與質量縮放係數 32
3.2.2 頸部尺寸與質量縮放係數 32
3.2.3 軀幹尺寸與質量縮放係數 33
3.2.4 四肢尺寸與質量縮放係數 33
3.3 台灣三歲兒童 34
3.3.1 頭部尺寸及質量縮放係數 36
3.3.2 頸部尺寸及質量縮放係數 37
3.2.3 軀幹尺寸與質量縮放係數 37
3.2.4 四肢尺寸與質量縮放係數 38
3.4 尺寸及質量縮放係數統整 38
3.5 Hybrid III三歲兒童生物動態反應區間 40
3.5.1 頭部墜落測試反應區間 40
3.5.2 頸部單擺測試反應區間 40
3.6 台灣三歲兒童的生物動態反應區間 42
3.6.1 頭部墜落測試反應區間 42
3.6.2 頸部單擺測試反應區間 43
3.7 生物動態反應區間統整 44
第四章 兒童的建模 47
4.1 台灣三歲兒童人偶 47
4.1.1 頭部墜落測試模擬 48
4.1.2 頸部單擺測試模擬 50
4.2 Hybrid III三歲兒童人偶 59
4.2.1 頭部墜落測試模擬 60
4.2.2 頸部單擺測試模擬 61
4.3 小結 67
4.4 模型應用模擬 74
第五章 結論與建議 78
5.1 結論 78
5.2 建議與未來發展 79
參考文獻 81
附錄A SAE J211 85
附錄B 電腦模擬材料設定 87
American Code of Federal Regulations(CFR), Title 49, Part 571 and Part 572. Federal motor vehicle safety, and Anthropomorphic test devices, Washington, DC: US Govt Printing Office, 2010.
Burdi, A. R., Huelke, D. F., Snyder, R. G., and Lowrey, G. H., “Infants and children in world of automobile safety design: pediatric and anatomical considerations for design of child restraints, Journal of Biomechanics, Vol. 2, pp. 267-280,1969.
Backaitis, S. H. and Mertz, H. J., Hybrid III: The First Humanlike Crash Test Dummy, SAE PT-44, SAE, 1994.
Cheng, H., Obergefell, L. and Rizer, A., “Generator of body data (GEBOD) manual, Armstrong Lab. Report #AL/CF-TR-1994-0051, Wrigjt-Patterson Air Force Base, OH., 1994.
Carlson, M., Burleigh, M., Barnes, A., Waagmeester, K., and van Ratingen, M., “Q3s 3 year old side impact dummy development, Proc. 20th ESV Conf., Paper No. 98-S7-O-01, Lyon, France, 2007.
Davidsson, J., Linder, A., Svensson, M. Y., Flogaard, A., Haaland, Y., Jakobsson, L., Loevsund, P. and Wiklund, K., “BioRID – a new biofidelic rear end impact dummy, Proc.1998 International IRCOBI.Conf., 1988.
Eppinger, R., Sun, E. and Kuppa, S., “Supplement: development of improved injury criteria for the assessment of advanced automotive restraint systems-II, Washington, DC: NHTSA, 2000.
Hodgson, V. R., and Thomas, L. M., “Comparison of head acceleration injury indices in cadaver skull fracture, SAE, Paper No. 710854, SAE, 1971.
Huang, M., Vehicle Crash Mechanics, Florida: CRC Press, LLC, 2002.
Hubbard, R. P., “Flexure of layeres cranial bone, Journal of Biomechanics, Vol. 4, PP 251-263, 1971.
Humanetics Innovative Solutions, http://www.humaneticsatd.com/ , 2012.
Irwin, A. and Mertz, H. J., “Biomechanical basis for the CRABI and Hybrid III child dummies, Proc. 41th Stapp Car Crash Conf., SAE, Paper No. 973317, SAE, 1997.
Maurath, C. A., “Development and validation of a finite element model of the Q3 anthropomorphic testing device, Dissertation, The George Washington University, 2007.
Mertz, H. J., “A Procedure for normalizing impact response data, SAE, Paper No. 840884, SAE, 1984.
Mertz, H. J., Irwin, A. L., Melvin, J. W., Stalnaker, R. C., and Beebe, M. S., “Size, weight and biomechanical impact response requirements for adult size small female and large male dummies, SAE, Paper No. 890756, SAE, 1989.
Mertz, H. J., Jarrett, K., Moss, S., Salloum, M. and Zhao, Y., “The Hybrid III 10-year-old dummy, Stapp Car Crash Journal, Vol. 45, Paper No. 2001-22-0014, SAE, 2001.
Mertz, H. J. and Patrick, L. M., “Strength and response of the human neck, Proc. 15th Stapp Car Crash Conf., SAE, Paper No. 710855, SAE, 1971.
McPherson, G. K. and Kriewall, T. J., “The elastic modulus of fetal cranial bone: a first step towards an understanding of biomechanics of fetal head modeling, Journal of Biomechanics, Vol. 13, PP 9-16, 1981.
Ono, K., Kaneoka, K., Wittek, A. and Kajzer, J., “Cervical injury mechanism based on the analysis of human cervical vertebral motion and head-neck-torso kinematics during low speed rear impacts, SAE, Paper No. 973340, SAE,1997.
Schneider, L., Robbins, D., Pflug, M., and Snyder, R., “Development of anthropometrically based design specifications for an advanced adult anthropomorphic dummy family, UMTRI, Report No. UMTRI-83-53-1, 1983.
Shams, T., Weerappuli, D., Sharma, D., Nurse, R., and Rangarajan, N., “Dynaman user’s manual, Version 3.0, GESAC, 1992.
Saul, R. A., Pritz, H. B., McFadden, J. and Backaitis, S. H., Hallenbeck, H. and Rhule, D., “Description and performance of the Hybrid III three-year-old, six-year-old and small female test dummies in restraint system and out-of-position air bag environments, Proc. 16th ESV Conf., Paper No. 98-S7-O-01, Windsor, Ontario, Canada, 1998.
Versace, J., “A review of the severity index, Proc. 15th Stapp Car Crash Conf., Vol. 22, No. 7-8, pp. 281-298, SAE, 1971.
Wolanin, M. J., Mertz, H. J., Nyznyk, R. S., and Vincent, J. H., “Description and basis of a three-year-old child dummy for evaluation passenger inflatable restraint concept, SAE, Paper No. 826040, SAE,1982.
World Health Organization(WHO), http://www.who.int/en/ , 2012.
Yang, K. H. and Le, J., “Finite element modeling Hybrid III head-neck complex, SAE, Paper No. 922526, SAE,1992.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top