跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/01 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉勝峯
研究生(外文):Sheng-FengLiu
論文名稱:微銑削加工軸向切深對系統穩定性之影響
論文名稱(外文):Effect of Axial Cutting Depth on Stability in Micro-End Milling
指導教授:王俊志
指導教授(外文):J-J Junz Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:78
中文關鍵詞:微銑削刀具剛性製程阻尼軸向切深系統穩定性加工策略
外文關鍵詞:Micro millingTool stiffnessProcess dampingMilling stabilityAxial cutting depthMachining strategy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:1
本論文探討微銑削加工製程中結構剛性與製程阻尼對軸向切深之關係以及對銑削穩定性之影響。本文首先以銑削力模式為基礎,配合刀具撓曲模式針對不同軸向切深下之刀具剛性變化進行探討;再以動態銑削模式進行穩定性之探討,並延伸至奈氏軌跡圖與實驗結果搭配定義出不同加工條件下之製程阻尼,且由實驗結果可得知在微銑削加工製程中刀具剛性與製程阻尼之變化為影響系統加工穩定性之重要因素。根據相同模式,由實驗結果發現微銑削加工在軸向切深超過臨界切深發生系統不穩定現象後,其不穩定現象與軸向切深呈非線性關係,即在大於臨界切深之加工條件下,亦可選擇到適當加工參數達到穩定切削條件並可兼顧加工效率。經理論分析與實驗驗證後,本研究進一步探討微銑削穩定性對刀具壽命之影響,由實驗得知系統發生不穩定現象後,軸向切深越小時因刀具剛性及製程阻尼之影響導致刀具的不穩定振動情形越嚴重,進而加速刀具磨耗影響其刀具壽命。最後,利用本文模式進行穩定性預測並與穩定耳垂圖進行比較,進而可得考慮刀具剛性與製程阻尼變化之微銑削穩定耳垂圖。
This study examines the effect of tool stiffness and process damping on axial cutting depth and milling stability in micro-end milling. In this paper, the tool deflection model was used to examine the variation of tool stiffness under different axial cutting depth. The result of the experiment was combined with nyquist contour to define process damping under different axial cutting depth. The tool stiffness and process damping were found to be dominant in affecting the stability of micro-end milling. Previous experiment showed that micro-end milling would get unstable as axial cutting depth exceeds critical cutting depth. However, the instability of the system wasn’t in a linear relationship with axial cutting depth. In other words, when axial cutting depth exceeds critical cutting depth, the system can still achieve stability and good efficiency with proper choice of axial cutting depth. Furthermore, the study used the model to examine the effect of the milling stability on the tool life span. From the experiment, it was found that as the axial cutting depth gets smaller, the effect of tool stiffness and process damping on the tool instability gets more serious and thus affects the life span of tool. Last, this study utilized different tool stiffness and process damping on axial cutting depth and milling stability in micro-end milling stability lobes.
總目錄
中文摘要 I
ABSTRACT II
誌謝 III
總目錄 IV
圖目錄 VII
表目錄 X
符號說明 XI
第一章 1
緒論 1
1.1研究動機與目的 1
1.2 文獻回顧 2
1.2.1 銑削力模式文獻回顧 2
1.2.2 刀具撓曲預測之相關文獻 4
1.2.3 微銑削加工穩定性之相關文獻 5
1.3研究範疇及論文架構 7
1.3.1 研究範疇 7
1.3.2 論文架構 7
第二章 9
端銑刀之銑削力模式 9
2.1 前言 9
2.2 銑削座標系統 9
2.3 角度域銑削力 13
2.3.1基本切削函數(elementary cutting function) 13
2.3.2 屑寬密度函數(chip width density function) 14
2.3.3 刀刃序列函數 16
2.3.4 角度域總銑削力 16
2.4 頻率域總銑削力 18
2.4.1刀刃序列函數之頻率域轉換 18
2.4.2 屑寬密度函數之頻率域轉換 19
2.4.3 基本切削函數之頻率域轉換 21
2.4.4 總銑削力的傅立葉轉換 22
2.4.5比切削力常數之計算 23
第三章 25
不同軸向切深對刀具剛性之影響 25
3.1 前言 25
3.2刀具撓曲預測模式 25
3.2.1 刀具力矩密度函數與力量中心 26
3.2.2 刀具撓曲模式 31
3.3 軸向切深對刀具剛性之影響 32
3.3.1比切削係數準確性之驗證 32
3.3.2 刀具撓曲之實驗驗證 34
3.3.3刀具撓曲驗證實驗設置 34
3.3.4 軸向切深對刀具剛性之影響 35
第四章 37
軸向切深對製程阻尼之關係與穩定性之影響 37
4.1 前言 37
4.2 動態銑削模式 37
4.3銑削顫振預測 43
4.3.1 銑削穩定耳垂圖 43
4.3.2 奈氏輪廓圖 44
4.3.3 不同軸向切深對製程阻尼之影響 47
第五章 48
實驗規劃與討論 48
5.1 前言 48
5.2實驗刀具與實驗材料 48
5.3實驗設備與儀器 50
5.3.1 微銑削實驗儀器設置 52
5.3.2 結構參數辨識實驗設置 53
5.4 加工穩定性之實驗規畫 55
5.5加工穩定性之判斷 56
5.6 微銑削穩定性實驗 57
5.6.1 不同軸向切深對穩定性之影響 57
5.6.2 微銑削加工穩定性對刀具壽命之影響 65
5.6.3 微銑削加工穩定耳垂圖預測 71
第六章 73
結論與建議 73
6.1結論 73
6.2建議 74
參考文獻 75



圖目錄
圖 2-1端銑刀之座標定義 10
圖 2-2端銑刀徑向及軸向切深幾何 11
圖 2-3軸向切深與削寬密度函數關係 15
圖 2-4刀具序列函數 16
圖 2-5 銑刀屑寬密度的捲積模式示意圖 17
圖 2-6垂直進給方向總銑削力的捲積示意圖 18
圖 2-7刀具序列函數的頻率域圖 19
圖2-8屑寬密度函數的頻率域圖 20
圖 3-1 刀具撓曲示意圖 26
圖 3-2 力矩產生密度函數示意圖 28
圖 3-3垂直進給方向總力矩捲積示意圖 30
圖3-4 實驗與模擬參數( =0.028 MM、 =1.122 MM、 =0.5 MM、 32
=10000 RPM、DOWN MILLING) 32
圖3-5 實驗與模擬參數( =0.024 MM、 =1.208 MM、 =0.5 MM、 33
=10000 RPM、DOWN MILLING) 33
圖3-6 實驗與模擬參數( =0.024 MM、 =1.122 MM、 =0.6 MM、 33
=10000 RPM、DOWN MILLING) 33
圖3-7 刀具撓曲驗證實驗設備安裝與配置 34
圖3-8 利用雷射位移計實際量測結果與模擬預測之驗證 35
圖3-9 不同軸向切深下之刀具剛性變化 36
(模擬條件:轉速10000 RPM、每刃進給0.02 MM、徑向切深0.2 MM、 36
刀具夾長13 MM) 36
圖4-1 刀具幾何與座標系統示意圖(A)俯視圖(B)側視圖 39
圖4-2銑削再生顫震系統方塊圖 42
圖4-3 奈氏軌跡圖之穩定切削情形(圓點為(-1,0J))。 45
切削條件:軸向切深0.9 MM 45
圖4-4奈氏軌跡圖之不穩定切削情形(圓點為(-1,0J))。 46
切削條件:軸向切深1.2 MM 46
圖4-5奈氏軌跡圖之極限穩定切削情形(圓點為(-1,0J))。 46
切削條件:軸向切深1.05 MM 46
圖4-6 不同軸向切深下之阻尼比變化 47
(模擬條件:轉速10000 RPM、每刃進給0.02 MM、徑向切深0.3 MM) 47
圖5-1 (A)刀具實物圖 (B) 刀具尺寸 49
圖5-2(A) LEADWELL MCV-610AP (B)普慧高速主軸 E0410-24 51
圖5-3 銑削實驗儀器設備安裝與配置 52
圖5-4 結構參數辨識實驗設備安裝與配置 53
圖5-5動力計頻譜之判斷(A1)為無顫振時之奈氏軌跡圖(A2)則為其相對應之力量頻域訊號,(B1)為顫振之奈式軌跡圖而(B2)則為其相對應之動力計力量頻域訊號 56
圖5-6 軸向切深1.4 MM之力量頻譜 58
圖5-7 徑向切深0.2 MM下不同軸向切深之力量頻譜與奈氏軌跡圖變化 59
圖5-8 徑向切深0.3 MM下不同軸向切深之力量頻譜 61
與奈氏軌跡圖變化 61
圖5-8(續) 徑向切深0.3 MM下不同軸向切深之力量頻譜 62
與奈氏軌跡圖變化 62
圖5-9軸向切深對刀具壽命週期數之關係(江榮華, 2011) 65
圖5-10 不同軸向切深下之(A) 0.8 MM(B) 1.4 MM(C) 1.8 MM 實驗加速規訊號與工件表面(江榮華, 2011) 66
圖5-11軸向切深0.8 MM之力量頻譜 67
圖5-12 徑向切深0.5 MM下不同軸向切深之力量頻譜與奈氏軌跡圖變化 68
圖5-12(續) 徑向切深0.5 MM下不同軸向切深之力量頻譜與奈氏軌跡圖變化 69
圖5-13 徑向切深0.5 MM下不同軸向切深力量頻譜除以平均力之變化 70
圖5-14 徑向切深0.3MM下刀具剛性與阻尼比之擬合方程式 71
圖5-15 徑向切深0.3MM下刀具剛性與阻尼比之擬合方程式相乘 71
圖5-16 徑向切深0.3 MM之穩定耳垂圖預測 72


表目錄
表4-1 雙自由度結構參數 45
表4-2切削參數 45
表5-1 碳化鎢銑刀(MESS2)規格表 48
表5-2 AL6061-T6材料成分表 49
表5-3實驗儀器 50
表5- 1 普慧高速主軸 E0410-24規格表 51
表5-5 實驗流程 54
表5-6 實驗規劃表 55
表5-7 徑向切深0.2MM下不同軸向切深之阻尼比變化 60
表5-8 徑向切深0.2 MM及0.3 MM下不同軸向切深之阻尼比變化 63
表5-9 徑向切深0.5 MM下不同軸向切深之阻尼比變化 69


Afazov, S. M., Ratchev, S. M. and Segal, J., (2010), Modelling and simulation of micro-milling cutting forces, Journal of Materials Processing Technology, Vol. 210, pp. 2154-2164.

Afazov, S. M., Ratchev, S. M. ,Segal J and Popov A.A., (2011),Chatter modeling in micro-milling by considering process nonlinearities International Journal of Machine Tool & Manufacture,Vol 56,pp28-38

Bao, W. Y. and Tansel, I. N., (2000), Modeling Micro-End-Milling Operations, Part I: Analytical Cutting Force Model, International Journal of Machine Tool & Manufacture, Vol. 40, No. 15, pp. 2155~2174

Budak, E., Altintas, Y., and Armarego E. J. A. , (1998), “Prediction of Milling Force Coefficients From Orthogonal cutting Data, “ ASME Journal of Manufacturing Science and Engineering, Vol. 118, pp. 216-224.

Dan, I., Mathew, J., (1990),“Tool wear and monitoring techniques for turning-a review, Int. J. Mach. Tools Manuf. Vol.30, pp.579-598.

Erhan Budak and Yusuf Altintas (1994), “Peripheral milling conditions for improved dimensional accuracy, International Journal of Machine Tools & Manufacture, Vol. 34, pp. 907-918.

Geoffrey, B., 1975,Fundamentals of Metal Machining and Machine Tools, 2nd printing at Taipei, Taiwan.

Huang, C. Y.,Wang, J. J. Junz, (2007), “Mechanistic Modeling of ProcessDamping in Peripheral Milling, Journal of Manufacturing Science and Engineering FEBRUARY, Vol. 129 pp.12-20.

Jemielniak, K., and Widota, A., (1989), “Numerical Simulation of Non-linearChatter Vibration in Turning, Int. J. Mach. Tools Manuf., Vol. 29, pp. 239–247.

Kline, W. A., Devor, R. E., Snareef, I. A., (1982), The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts, International Journal of Machine Tool Design and Research, Vol. 22, No. 1, pp. 7-22.

Kline, W. A. DeVor, R. E., and Shareef, (1982), I. A., “The prediction of surface accuracy in end milling, ASME Journal of Engineering for Industry, Vol. 104, pp. 272-278.

Koenigsberger, F., and Sabberwal, A. J. P., (1961), “An Investigation into the Cutting Force Pulsations During Milling Operations, “International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33.

Lee, S. W., Mayor, R. and Ni, J., (2006), Dynamic Analysis of a Mesoscale Machine Tool, ASME, J. Manufacturing Science and Engineering, Vol. 128, pp. 194-203.

Martellotti, M. E.,(1941), “An Analysis of the Milling Process, “Transaction of ASME, Vol. 63, pp.677-700.

Martellotti, M. E., (1945), “An Analysis of the Milling Process, Part 2: Down Milling, “Transaction of ASME, Vol. 67, pp. 233-251.

Melkote, S. N. and Endres, W. J., (1998), The Importance of Including Size Effect When Modeling Slot Milling, ASME Journal of Manufacturing Science and Engineering, Vol. 120, pp. 69-75.

Montgomery,D.,and Altintas, Y., (1991), “Mechanism of Cutting Force andSurface Generation in Dynamic Milling, ASME J. Eng. Ind., 113, pp. 160–168.

Park, H.W. and Liang, S. Y., (2007), Analysis of The Scale Effect for Microscale Machine Tools, International Manufacture Science AndEngineering Conference, Atlanta, Georgia, USA, pp. 1-8.

Rahnama R., Sajjadi M. and Simon S., (2009), Chatter suppression in micro end milling with process damping, Journal of Materials Processing Technology, Vol. 209,pp 5766-5776

Ryu, S. H., Lee, H. S. and Chu, C. N., (2003), The form error prediction in side wall machining considering tool deflection, International Journal of Machine Tools and Manufacture, Vol. 43, pp. 1405-1411.

Sabberwal, A. J. P., (1961), “Chip Section and Cuting Force During the Milling Operation, “Annals of the CIRP, Vol. 10, pp. 197-203.

Schulz, H. and Moriwaki, T., (1992), High-Speed Machining, Annals of the CIRP, vol. 41, p.637.

Tarng, Y. S., Young, H. T., and Lee, B. Y., (1992), “An Analytical Model of Chatter Vibration in Metal Cutting, Int. J. Mach. Tools Manuf., Vol. 34, pp.183–197.

Tlusty, J., and Ismail, F., (1983), “Special Aspects of Chatter in Milling, ASMEJ. Eng. Ind.,Vol. 105, pp. 24–32.

Tlusty, J., and MacNeil, P. , (1975), “Dynamics of Cutting Forces in End Milling, “CIRP annals, Vol. 24, pp. 21-25.

Tobias, S.A., and Fishwick, W.W., (1958), “Theory of Regenerative Machine Tool Chatter,Engineering,205

Wang, J. J. and Liang S. Y. and Book W. J.
(1994), “Convolution Analysis of Milling Force Pulsation, “ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25.

Wang, J. J., (1992), Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification, Ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, April.

Wang, J. J., and Zheng C. M., (2002), “An analytical force model with shearing and ploughing mechanisms for end milling, International Journal of Machine Tools & Manufacture, Vol.42, pp.761-771.

Wang, J.J., andZheng, C. M., (2002), “An Analytical Force Model with Shearingand Ploughing Mechanisms for End Milling, Int. J. Mach. Tools Manuf.,Vol. 42, pp. 761–771.

Wang, W., Kweon, S. H. and Yang, S. H., (2005), A study on roughness of the micro-end-milled surface produced by aminiatured machine tool, Journal of Materials Processing Technology, Vol. 41, pp. 702-708.

Weck, Manfred, (1980),“Handbook of Machine Tools,’’ John Wiley & Sons Ltd, pp.60–61.

Won-Soo Yun, Jeong Hoon Ko (2002), “Development of virtual machining system, part 2: prediction and analysis of a machined surface error, International Journal of Machine Tools & Manufacture, Vol. 42, pp. 1607-1615.

Yellowley, I., (1985),“Observations on the Mean Values of Forces, Torque and Specific Power in the Peripheral Milling Process, International Journal of Machine Tool Design and Research, Vol. 25, No. 4, pp. 337-346.

彭仕良,撓件銑削加工尺寸誤差及自動補償之研究,國立成功大學機械工程學系,八十四年碩士論文

江榮華,微銑削刀具疲勞斷裂之探討,國立成功大學機械研究所,一百年碩士論文

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top