跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/02 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃郁雯
研究生(外文):Yu-WenHuang
論文名稱:有效控制部分硝化串聯厭氧氨氧化程序處理高氮廢水之研究
論文名稱(外文):Effectively control of partial nitrification connected with ANAMMOX process to treat nitrogenous wastewater
指導教授:鄭幸雄鄭幸雄引用關係
指導教授(外文):Sheng-Shung Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:171
中文關鍵詞:部份硝化高氮廢水厭氧氨氧化比攝氧速率
外文關鍵詞:Partial nitrificationNitrogeneous wastewaterANAMMOXS.OUR
相關次數:
  • 被引用被引用:6
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是建立一自營性除氮生物程序,包含兩段式程序 (Partial nitrification/ANAMMOX)與單一槽體同時進行兩種反應程序 (CANON)來處理TOC/NH4+〉0.05之高氮工業廢水,如石化廢水與光電廢水,單槽式反應程序為在同一系統當中,石化廢水中的氨氮同時被兩種微生物利用轉換成氮氣,最佳的去除效率在溶氧控制於小於1 mg O2 L-1,HRT在12天,氨氮濃度在150 mg N L-1,總氮最大的轉換率在0.15 kg N m-3 d-1,但負荷無法繼續提升且硝酸生成量無法符合理論反應式,因此再將自營性除氮程序給改良分成兩段式,針對兩種不同微生物生長條件給最佳化,部分硝化為氧化50%氨氮至亞硝酸氮,後由第二段之厭氧氨氧化程序將等比例的氨氮與亞硝酸氮轉化至氮氣,達到去除廢水中高氨氮的污染物,研究中主要探討部分硝化程序的控制。
部分硝化槽屬好氧槽,為將氨氧化菌 (AOB)給優勢化,不利亞硝酸氧化菌 (NOB)生長,操作高pH值為7.8,氨氮體積負荷最高VLR=1 kg N m-3 d-1,中溫環境35-42⁰C,與高分子氨濃度 (10-30 mg N L-1),在連續操作500天的情況下,硝酸生成量最高只有3 mg N L-1,成功將NOB活性給抑制住;另外,利用氧傳質量平衡的概念,以氧傳實驗準確計算出KLa值為10-15 hr-1,藉由間階式曝氣提供有限的氧量,亞硝酸與氨氮的比值可達到0.8-1.5,符合厭氧氨氧化反應式之比值,當串聯處理光電廢水之厭氧槽時,進流中含有100 mg O2 L-1之COD時,部分硝化表現依然不受影響,仍有硝酸被抑制且亞硝酸生成之現象;經馴養後的AOB在活性表現上S.OURN,max為0.6 mg O2 (mg VSS)-1 d-1,與植種源相比提高了三倍,對分子氨之半抑制常數KI, FA為40 mg N L-1,皆表現出槽中AOB高活性與高負荷耐受度之特性。而第二段之厭氧氨氧化槽,使用固定擔體以截流汙泥與高流量HRT=0.5 d之策略,快速啟動厭氧氨氧化程序,在啟動約100天總氮之轉換率可達0.4 kg N m-3 d-1,將氨氮與亞硝酸轉換至氮氣。
最後利用分子生物技術探討植種源與馴養後微生物特性,以clone library觀察到之菌相,在植種源當中由於廢水特性複雜,系統中大多為uncultured bacteria,約23%以Thauera sp.異營菌為主,AOB接近Nitrosomonas marina佔4%,無NOB被偵測到;經馴養後之菌相55%以Nitrosomonas europaea佔最優勢,另一株AOB為Nitrosomonas eutropha佔12%,亦無NOB被偵測到,整體菌相大幅轉移;SEM結果以氯化銨溶液馴養後汙泥型態為短桿菌屬於Nitrosomonas sp.,在串聯含COD廢水後可觀察到有許多絲狀菌與短桿菌之異營菌出現以降解進流中之COD,後期以氯化銨溶液馴養後,槽中菌相仍存在絲狀菌、球菌與短桿菌,不織布擔體不易做菌種篩選;FISH照片可直接觀察到AOB在系統中確實屬於主導性的微生物,亦無NOB被偵測到。由以上微生物的檢測方式亦可證明反應槽的特殊操作策略下能夠有效達到部分硝化反應。

The study is aim to establish an autotrophic biological nitrogen removal process, including partial nitrificaiot/ANAMMOX process and single-stage CANON process, to treat TOC/NH4+〉0.05 nitrogeneous wastewater like petrochemical wastewater and TFT-LCD wastewater. In CANON process, there are two organisms, ammonia oxidizing bacteria (AOB) and ANAMMOX bacteria, converting ammonia to nitrogen gas applied in petrochemical wastewater. The optimal operation parameters are DO〈1 mg O2 L-1 ,HRT=12 d and NH4+-N= 150 mg N L-1. The maximum nitrogen conversion rate is 0.15 kg N m-3 d-1. But it’s hard to elevate the nitrogen loading when operating CANON process. To improve this matter, partial nitrification/ANAMMOX process are operated to slove nitrogen problem. For different characteristics of AOB and ANAMMOX bacteria, the operation strategies of the two processes are different.
In partial nitrification process, NOB is impaired under 7.8 of pH, 35-42⁰C of temperature and 10-30 mg N L-1 of free ammonia. During 500 days operation time, nitrate production is under 3 mg N L-1. And the limiting quantity of oxygen controlled by the interval of alternating aeration, nitrite/ammonia concentration in effluent is 0.8-1.5 fitted the stoichiometry of ANAMMOX process. KLa value is 10-15 hr-1, the oxygen transfered rate was found to correspond well with the nitrite production. After feeding the effluent of UASB unit treating TFT-LCD wastewater, the substrate is composed of 200 mg N L-1 ammonia and 100 mg O2 L-1 COD and the performance of partial nitrification is not affected.
The S.OURN,max of AOB is 0.6 mg O2 (mg VSS)-1 d-1 after well enrichment. The activity is higher than the S.OURN,max of inoculum. KI, FA value is 40 mg N L-1. It indicates that the AOB in partial nitrification is tolerant to higher ammonia concentration. KI value of TMAH is 700 mg N L-1. AOB is also tolerant to TMAH compound.
The startup strategies of ANAMMOX process is that the bioreactor is fixed with nonwoven carriers to retain biomass under high dilution influent. HRT in startup period is 0.2 day. After operating 100 days, the VLR is 0.4 kg N m-3 d-1. Compared to CANON process, partial nitrification/ANAMMOX process has higher loading rate.
Finally, molecular biological techniques were applied to discuss the charactrestics of organisms. From the clone library results, the dominant species is Thauera sp.,heterotrophic bacteria. AOB is close to Nitrosomonas marina and NOB was not detected. The clone library result of partial nitrification reactor indicates that the dominant AOB were Nitrosomonas europaea and Nitrosomonas eutropha. There is also no NOB detected. In SEM photos, there are uniform rod shapes of bacteria belonging to Nitrosomonas sp. in NH4Cl solution feeding. After feeding with the effluent of UASB unit treating TFT-LCD wastewater, there are filamental, spherical and rod shapes of bacterium. From FISH result, AOB is the dominant microorganisms in partial nitrification reactor and there is no NOB in the system. The microorganisms detection results prove that it’s successful to operate partial nitrification with the controlling strategies

中文摘要 1
Abstract 3
第一章 前言 16
第二章 文獻回顧 18
2.1 高氮廢水管制現況與廢水特性 18
2.1.1氮的循環 18
2.1.2 氮系污染物排放現況 20
2.1.3 高氮工業廢水水質特性 21
2.1.4 高氮工業廢水放流水法規增訂 24
2.2 生物除氮程序 30
2.2.1 傳統硝化/脫硝程序 30
2.2.2 新穎生物除氮程序 40
2.3 部分硝化之反應器控制參數與相關程序應用 46
2.3.1 部分硝化控制因子 46
2.3.2 相關程序應用 53
2.4 厭氧氨氧化發展與程序控制 62
2.4.1 厭氧氨氧化程序發展之沿革 62
2.4.2 厭氧氨氧化及相關應用程序 66
第三章 材料與方法 75
3.1 研究架構與生物反應器介紹 75
3.1.1部分硝化槽 (Partial nitrification process) 76
3.1.2 厭氧氨氧化槽(ANAMMOX process) 78
3.1.3 單一自營性除氮槽(CANON process) 80
3.2 反應器質量(氧氣)傳輸特性 81
3.2.1 氧傳係數試驗 81
3.3 生物活性測試 83
3.3.1 比攝氧速率實驗(Respirometry and OUR test) 84
3.4 一般水質分析項 85
3.5 儀器分析 86
3.5.1 液相層析儀(Liquid chromatography) 86
3.5.2 氣相層析儀(Gas chromatography) 86
3.5.3 總有機碳(Total Organic Carbon) 86
3.6 電子顯微鏡之生物外觀與菌相觀察 87
3.7 分子生物技術 88
3.7.1 DNA萃取(Modified Miller/Glass-Bead Beating Method) 89
3.7.2 聚合酵素連鎖反應(Polymerase Chain Reaction, PCR) 91
3.7.3 16S rRNA選殖實驗(Clone library) 93
3.7.4 螢光原位雜合 (Fluorescene in situ hybridization, FISH) 95
第四章 結果與討論 98
4.1 單槽式自營性除氮程序 98
4.1.1 反應槽連續操作成果 98
4.1.2 反應槽操作遭遇的問題 100
4.2 部分硝化之操作參數與功能指標 102
4.2.1 氧傳試驗 102
4.2.2 操作參數設計依據 105
4.2.3 操作功能指標建立 115
4.2.4 氧氣質量平衡驗證 118
4.3 厭氧氨氧化程序之操作參數與功能指標 122
4.3.1 操作參數設計依據與功能指標 122
4.4 硝化菌攝氧活性測試 130
4.4.1 氨氮與分子氨對硝化活性探討 130
4.4.2 TMAH對硝化活性探討 135
4.5 植種源特性評估 137
4.5.1 硝化活性探討 138
4.5.2 微生物族群16SrDNA建立 143
4.6 部分硝化槽微生物生態之探討 149
4.6.1 微生物族群16S rDNA建立 149
4.6.2 螢光原位雜合技術 (Fluorescence in situ Hybridization, FISH) 153
4.6.3 微生物菌相觀察 156
第五章 結論與建議 158
5.1 結論 158
5.2 建議 159
第六章 參考文獻 160


Abeling, U., Seyfried, C.F. 1992. Anaerobic-Aerobic Treatment of High-Strength Ammonium Waste-Water - Nitrogen Removal Via Nitrite. Water Science and Technology, 26(5-6), 1007-1015.
Ahn, J.H., Yu, R., Chandran, K. 2008. Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor. Biotechnol Bioeng, 100(6), 1078-87.
Ahn, Y.H. 2006. Sustainable nitrogen elimination biotechnologies: A review. Process Biochemistry, 41(8), 1709-1721.
Alleman, J.E. 1984. Elevated Nitrite Occurrence In Biological Wastewater Treatment Systems. Water Science and Technology, 17, 409-419.
Amarger, N., Alexande.M. 1968. Nitrite Formation from Hydroxylamine and Oximes by Pseudomonas Aeruginosa. Journal of Bacteriology, 95(5), 1651-&.
Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S., Srinath, E.G. 1976. Inhibition of Nitrification by Ammonia and Nitrous-Acid. Journal Water Pollution Control Federation, 48(5), 835-852.
Arp, D.J., Chain, P.S., Klotz, M.G. 2007. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol, 61, 503-28.
Baker, D.R., Loehr, R.C., Anthonisen, A.C. 1975. Oxygen-Transfer at High Solids Concentrations. Journal of the Environmental Engineering Division-Asce, 101(5), 759-774.
Bateman, A. 1997. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends in Biochemical Sciences, 22(1), 12-13.
Beijerinck, M.W. 1888. Die Bacterien der Papillionaceen Knoellchen. Bot Zeitung, 46, 797-804.
Bernet, N., Dangcong, P., Delgenes, J.P., Moletta, R. 2001. Nitrification at low oxygen concentration in biofilm reactor. Journal of Environmental Engineering-Asce, 127(3), 266-271.
Bernhard, A.E., Landry, Z.C., Blevins, A., de la Torre, J.R., Giblin, A.E., Stahl, D.A. 2010. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl Environ Microbiol, 76(4), 1285-9.
Beun, J.J., van Loosdrecht, M.C.M., Heijnen, J.J. 2000. Aerobic granulation. Water Science and Technology, 41(4-5), 41-48.
Blackburne, R., Yuan, Z.G., Keller, J. 2008. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation, 19(2), 303-312.
Bock, E., Schmidt, I., Stuven, R., Zart, D. 1995. Nitrogen Loss Caused by Denitrifying Nitrosomonas Cells Using Ammonium or Hydrogen as Electron-Donors and Nitrite as Electron-Acceptor. Archives of Microbiology, 163(1), 16-20.
Bollmann, A., Bar-Gilissen, M.J., Laanbroek, H.J. 2002. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl Environ Microbiol, 68(10), 4751-7.
Burrell, P.C., Keller, J., Blackall, L.L. 1998. Microbiology of a nitrite-oxidizing bioreactor. Appl Environ Microbiol, 64(5), 1878-83.
Casey, T.J., Karmo, O.T. 1974. Influence of Suspended Solids on Oxygen-Transfer in Aeration Systems. Water Res, 8(10), 805-811.
Castignetti, D., Gunner, H.B. 1980. Sequential Nitrification by an Alcaligenes Sp and Nitrobacter-Agilis. Canadian Journal of Microbiology, 26(9), 1114-1119.
Chain, P., Lamerdin, J., Larimer, F., Regala, W., Lao, V., Land, M., Hauser, L., Hooper, A., Klotz, M., Norton, J., Sayavedra-Soto, L., Arciero, D., Hommes, N., Whittaker, M., Arp, D. 2003. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea (vol 185, pg 2759, 2003). Journal of Bacteriology, 185(21), 6496-6496.
Chamchoi, N., Nitisoravut, S., Schmidt, J.E. 2008. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification. Bioresource Technology, 99(9), 3331-3336.
Chen, H.H., Liu, S.T., Yang, F.L., Xue, Y., Wang, T. 2009. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource Technology, 100(4), 1548-1554.
Cho, S., Fujii, N., Lee, T., Okabe, S. 2011. Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor. Bioresource Technology, 102(2), 652-659.
Chuang, H.P., Ohashi, A., Imachi, H., Tandukar, M., Harada, H. 2007. Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition. Water Res, 41(2), 295-302.
Daims, H., Purkhold, U., Bjerrum, L., Arnold, E., Wilderer, P.A., Wagner, M. 2001. Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches. Water Sci Technol, 43(3), 9-18.
Dalsgaard, T., Thamdrup, B. 2002. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Applied and Environmental Microbiology, 68(8), 3802-3808.
Dapena-Mora, A., Fernandez, I., Campos, J.L., Mosquera-Corral, A., Mendez, R., Jetten, M.S.M. 2007. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40(4), 859-865.
De Clippeleir, H., Defoirdt, T., Vanhaecke, L., Vlaeminck, S.E., Carballa, M., Verstraete, W., Boon, N. 2011. Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Appl Microbiol Biotechnol, 90(4), 1511-9.
DeLong, E.F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci U S A, 89(12), 5685-9.
Denecke, M., Liebig, T. 2003. Effect of carbon dioxide on nitrification rates. Bioprocess Biosyst Eng, 25(4), 249-53.
Desloover, J., De Clippeleir, H., Boeckx, P., Du Laing, G., Colsen, J., Verstraete, W., Vlaeminck, S.E. 2011. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Research, 45(9), 2811-2821.
Dionisi, D., Levantesi, C., Renzi, V., Tandoi, V., Majone, M. 2002. PHA storage from several substrates by different morphological types in an anoxic/aerobic SBR. Water Sci Technol, 46(1-2), 337-44.
Duce, R.A., LaRoche, J., Altieri, K., Arrigo, K.R., Baker, A.R., Capone, D.G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R.S., Geider, R.J., Jickells, T., Kuypers, M.M., Langlois, R., Liss, P.S., Liu, S.M., Middelburg, J.J., Moore, C.M., Nickovic, S., Oschlies, A., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L.L., Uematsu, M., Ulloa, O., Voss, M., Ward, B., Zamora, L. 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 320(5878), 893-7.
Egli, K., Fanger, U., Alvarez, P.J., Siegrist, H., van der Meer, J.R., Zehnder, A.J. 2001. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology, 175(3), 198-207.
Erguder, T.H., Boon, N., Vlaeminck, S.E., Verstraete, W. 2008. Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor. Environmental Science & Technology, 42(23), 8715-20.
Ford, D.L., Churchwell, R.L., Kachtick, J.W. 1980. Comprehensive Analysis of Nitrification of Chemical-Processing Wastewaters. Journal Water Pollution Control Federation, 52(11), 2726-2746.
Francis, C.A., Beman, J.M., Kuypers, M.M.M. 2007. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. Isme Journal, 1(1), 19-27.
Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., Oakley, B.B. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A, 102(41), 14683-8.
Furukawa, K., Yamamoto, T., Takaki, K., Koyama, T. 2006. Novel partial nitritation treatment for anaerobic digestion liquor of swine wastewater using swim-bed technology. Journal of Bioscience and Bioengineering, 102(6), 497-503.
Fux, C., Siegrist, H. 2004. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations. Water Science and Technology, 50(10), 19-26.
Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878), 889-92.
Ganigue, R., Lopez, H., Balaguer, M.D., Colprim, J. 2007. Partial ammonium oxidation to nitrite of high ammonium content urban land fill leachates. Water Research, 41(15), 3317-3326.
Gayon, U., Dupetit, G. 1886. Recherches sur la reduction des nitrates par les infiniment petits. Mem Sot Sci Phys Nat Bordeaux Ser, 3, 201-307.
Gieseke, A., Nielsen, J.L., Amann, R., Nielsen, P.H., de Beer, D. 2005. In situ substrate conversion and assimilation by nitrifying bacteria in a model biofilm. Environ Microbiol, 7(9), 1392-404.
Guisasola, A., Chandran, K., Smets, B.F., Baeza, J.A., Carrera, J., Lafuente, J. 2006. Observation and mathematical description of the acceleration phenomenon in batch respirograms associated with ammonium oxidation. Water Sci Technol, 54(8), 181-8.
Guo, X., Kim, J.H., Behera, S.K., Park, H.S. 2008. Influence of dissolved oxygen concentration and aeration time on nitrite accumulation in partial nitrification process. International Journal of Environmental Science and Technology, 5(4), 527-534.
Gupta, A.B., Gupta, S.K. 2001. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Water Research, 35(7), 1714-1722.
Guven, D., Dapena, A., Kartal, B., Schmid, M.C., Maas, B., van de Pas-Schoonen, K., Sozen, S., Mendez, R., Op den Camp, H.J.M., Jetten, M.S.M., Strous, M., Schmidt, I. 2005. Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology, 71(2), 1066-1071.
Hagopian, D.S., Riley, J.G. 1998. A closer look at the bacteriology of nitrification. Aquacultural Engineering, 18(4), 223-244.
Haldane, J.B.S. 1965. Enzymes. M.I.T. Press, Cambridge.
Hanaki, K., Wantawin, C., Ohgaki, S. 1990. Nitrification at Low-Levels of Dissolved-Oxygen with and without Organic Loading in a Suspended-Growth Reactor. Water Research, 24(3), 297-302.
Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., van Loosdrecht, M.C.M., Heijnen, J.J. 1998. The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology, 37(9), 135-142.
Hellinga, C., Van Loosdrecht, M.C.M., Heijnen, J.J. 1999. Model based design of a novel process for nitrogen removal from concentrated flows. Mathematical and Computer Modelling of Dynamical Systems, 5(4), 351-371.
Henze, M., Harremoes, P., La Cour Jansen, J., Arvin, E. 2002. Wastewater Treatment: Biological and Chemical Processes. Third ed. Springer, Verlag, Berlin, Heidelnerg, New York.
Hiorns, W.D., Hastings, R.C., Head, I.M., McCarthy, A.J., Saunders, J.R., Pickup, R.W., Hall, G.H. 1995. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiology, 141 ( Pt 11), 2793-800.
Horz, H.P., Rotthauwe, J.H., Lukow, T., Liesack, W. 2000. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J Microbiol Methods, 39(3), 197-204.
Hwang, H.J., Stenstrom, M.K. 1985. Evaluation of Fine-Bubble Alpha-Factors in near Full-Scale Equipment. Journal Water Pollution Control Federation, 57(12), 1142-1151.
Jaroszynski, L.W., Oleszkiewicz, J.A. 2011. Autotrophic ammonium removal from reject water: partial nitrification and anammox in one-reactor versus two-reactor systems. Environmental Technology, 32(3), 289-294.
Jetten, M.S.M. 2008. The microbial nitrogen cycle. Environmental Microbiology, 10(11), 2903-2909.
Jetten, M.S.M., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G., Strous, M. 2001. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process. Current Opinion in Biotechnology, 12(3), 283-288.
Johnstone, B.H., Jones, R.D. 1988. Effects of Light and CO on the Survival of a Marine Ammonium-Oxidizing Bacterium during Energy Source Deprivation. Appl Environ Microbiol, 54(12), 2890-3.
Joss, A., Derlon, N., Cyprien, C., Burger, S., Szivak, I., Traber, J., Siegrist, H., Morgenroth, E. 2011. Combined nitritation-anammox: advances in understanding process stability. Environ Sci Technol, 45(22), 9735-42.
Joss, A., Salzgeber, D., Eugster, J., Konig, R., Rottermann, K., Burger, S., Fabijan, P., Leumann, S., Mohn, J., Siegrist, H. 2009. Full-Scale Nitrogen Removal from Digester Liquid with Partial Nitritation and Anammox in One SBR. Environmental Science & Technology, 43(14), 5301-5306.
Juretschko, S., Timmermann, G., Schmid, M., Schleifer, K.H., Pommerening-Roser, A., Koops, H.P., Wagner, M. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Applied and Environmental Microbiology, 64(8), 3042-3051.
Kartal, B., Kuenen, J.G., van Loosdrecht, M.C.M. 2010. Sewage Treatment with Anammox. Science, 328(5979), 702-703.
Kartal, B., Rattray, J., van Niftrik, L.A., van de Vossenberg, J., Schmid, M.C., Webb, R.I., Schouten, S., Fuerst, J.A., Damste, J.S.S., Jetten, M.S.M., Strous, M. 2007. Candidatus Anammoxoglobus propionicus a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 30(1), 39-49.
Kartal, B., van Niftrik, L., Rattray, J., de Vossenberg, J.L.C.M.V., Schmid, M.C., Damste, J.S.S., Jetten, M.S.M., Strous, M. 2008. Candidatus 'Brocadia fulgida': an autofluorescent anaerobic ammonium oxidizing bacterium. Fems Microbiology Ecology, 63(1), 46-55.
Killham, K. 1986. Heterotrophic nitri¢cation. In: Nitri¢cation. 117-126.
Kim, D.J., Kim, S.H. 2006. Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics. Water Res, 40(5), 887-94.
Kim, D.J., Lee, D.I., Keller, J. 2006. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour Technol, 97(3), 459-68.
Kindaichi, T., Ito, T., Okabe, S. 2004a. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl Environ Microbiol, 70(3), 1641-50.
Kindaichi, T., Okabe, S., Satoh, H., Watanabe, Y. 2004b. Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water Sci Technol, 49(11-12), 61-8.
Knowles, G., Downing, A.L., Barrett, M.J. 1965a. Determination of Kinetic Constants for Nitrifying Bacteria in Mixed Culture with Aid of an Electronic Computer. Journal of General Microbiology, 38(2), 263-&.
Knowles, G., Downing, A.L., Barrett, M.J. 1965b. Determination of Kinetic Constants for Nitrifying Bacteria in Mixed Culture, with the Aid of an Electronic Computer. J Gen Microbiol, 38, 263-78.
Koenneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., Stahl, D.A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437, 543-546.
Koops, H.P., Bottcher, B., Moller, U.C., Pommerening-Roser, A., Stehr, G. 1990. Description of a new species of Nitrosococcus. Arch. Microbiol, 154, 244-248.
Koops, H.P., Pommerening-Roser, A. 2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. Fems Microbiology Ecology, 37(1), 1-9.
Kowalchuk, G.A., Stephen, J.R. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol, 55, 485-529.
Kowalchuk, G.A., Stephen, J.R., De Boer, W., Prosser, J.I., Embley, T.M., Woldendorp, J.W. 1997. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol, 63(4), 1489-97.
Kuai, L.P., Verstraete, W. 1998. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Applied and Environmental Microbiology, 64(11), 4500-4506.
Kuenen, J.G. 2008. Anammox bacteria: from discovery to application. Nat Rev Microbiol, 6(4), 320-6.
Kuenen, J.G., Jetten, M.S.M. 2001. Extraordinary anaerobic ammonium-oxidizing bacteria. Asm News, 67(9), 456-+.
Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jorgensen, B.B., Kuenen, J.G., Damste, J.S.S., Strous, M., Jetten, M.S.M. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422(6932), 608-611.
Laanbroek, H.J., Bodelier, P.L.E., Gerards, S. 1994. Oxygen-Consumption Kinetics of Nitrosomonas-Europaea and Nitrobacter-Hamburgensis Grown in Mixed Continuous Cultures at Different Oxygen Concentrations. Arch Microbiol, 161(2), 156-162.
Laanbroek, H.J., Gerards, S. 1993. Competition for Limiting Amounts of Oxygen between Nitrosomonas-Europaea and Nitrobacter-Winogradskyi Grown in Mixed Continuous Cultures. Arch Microbiol, 159(5), 453-459.
Levenspi.O. 1972. Experimental Search for a Simple Rate Equation to Describe Deactivating Porous Catalyst Particles. Journal of Catalysis, 25(2), 265-&.
Liu, S.T., Yang, F.L., Gong, Z., Su, Z.C. 2008. Assessment of the positive effect of salinity on the nitrogen removal performance and microbial composition during the start-up of CANON process. Applied Microbiology and Biotechnology, 80(2), 339-348.
Mandt, M.G., Bathija, P.R. 1978. Jet Fluid Gas/Liquid Contacting and Mixing. AIChE Symposium Series, 73.
Martens-Habbena, W., Berube, P.M., Urakawa, H., de la Torre, J.R., Stahl, D.A. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266), 976-9.
Mosquera-Corral, A., Gonzalez, F., Campos, J.L., Mendez, R. 2005. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds. Process Biochemistry, 40(9), 3109-3118.
Moussa, M.S., Lubberding, H.J., Hooijmans, C.M., van Loosdrecht, M.C.M., Gijzen, H.J. 2003. Improved method for determination of ammonia and nitrite oxidation activities in mixed bacterial cultures. Applied Microbiology and Biotechnology, 63(2), 217-221.
Mulder, A., van de graaf, A.A., Robertson, L.A., Kuenen, J.G. 1995. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized-Bed Reactor. Fems Microbiology Ecology, 16(3), 177-183.
Okabe, S., Oozawa, Y., Hirata, K., Watanabe, Y. 1996. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Research, 30(7), 1563-1572.
Okabe, S., Oshiki, M., Takahashi, Y., Satoh, F. 2011a. Development of long-term stable partial nitrification and subsequent anammox process. Bioresource Technology, 102(13), 6801-6807.
Okabe, S., Oshiki, M., Takahashi, Y., Satoh, H. 2011b. Development of long-term stable partial nitrification and subsequent anammox process. Bioresour Technol, 102(13), 6801-7.
Padmavathi, G., Rao, K.R. 1991. Hydrodynamic Characteristics of Reversed Flow Jet Loop Reactor as a Gas-Liquid Solid Contactor. Chemical Engineering Science, 46(12), 3293-3296.
Painter, H.A., Loveless, J.E. 1983. Effect of Temperature and Ph Value on the Growth-Rate Constants of Nitrifying Bacteria in the Activated-Sludge Process. Water Res, 17(3), 237-248.
Peng, Y., Zhu, G. 2006. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biotechnol, 73(1), 15-26.
Peng, Y.Z., Li, Y.Z., Peng, C.Y., Wang, S.Y. 2004. Nitrogen removal from pharmaceutical manufacturing wastewater with high concentration of ammonia and free ammonia via partial nitrification and denitrification. Water Sci Technol, 50(6), 31-6.
Pol, L.W.H., Lopes, S.I.D., Lettinga, G., Lens, P.N.L. 2004. Anaerobic sludge granulation. Water Research, 38(6), 1376-1389.
Pollice, A., Tandoi, V., Lestingi, C. 2002. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res, 36(10), 2541-2546.
Pommerening-Roser, A., Rath, G., Koops, H.P. 1996. Phylogenetic diversity within the genus Nitrosomonas. Syst. Appl. Microbiol, 19, 344-351.
Prosser, J.I. 1989. Autotrophic Nitrification in Bacteria. Advances in Microbial Physiology, 30, 125-181.
Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M.C., Koops, H.P., Wagner, M. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Applied and Environmental Microbiology, 66(12), 5368-5382.
Purkhold, U., Wagner, M., Timmermann, G., Pommerening-Roser, A., Koops, H.P. 2003. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. International Journal of Systematic and Evolutionary Microbiology, 53, 1485-1494.
Pynaert, K., Smets, B.F., Beheydt, D., Verstraete, W. 2004. Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition. Environmental Science & Technology, 38(4), 1228-1235.
Pynaert, K., Sprengers, R., Laenen, J., Verstraete, W. 2002. Oxygen-limited nitrification and denitrification in a lab-scale rotating biological contactor. Environmental Technology, 23(3), 353-362.
Qiao, S., Matsumoto, N., Shinohara, T., Nishiyama, T., Fujii, T., Bhatti, Z., Furukawa, K. 2010. High-rate partial nitrification performance of high ammonium containing wastewater under low temperatures. Bioresour Technol, 101(1), 111-7.
Rittmann, B.E., McCarty, P.L. 2001. Environmental Biotechnology: Principles and Application. McGraw-Hill, New York.
Robertson, L.A., Cornelisse, R., Zeng, R., Kuenen, J.G. 1989. The Effect of Thiosulfate and Other Inhibitors of Autotrophic Nitrification on Heterotrophic Nitrifiers. Antonie Van Leeuwenhoek Journal of Microbiology, 56(4), 301-309.
Robertson, L.A., Dalsgaard, T., Revsbech, N.P., Kuenen, J.G. 1995. Confirmation of Aerobic Denitrification in Batch Cultures, Using Gas-Chromatography and N-15 Mass-Spectrometry. Fems Microbiology Ecology, 18(2), 113-119.
Robertson, L.A., Kuenen, J.G. 1990. Combined Heterotrophic Nitrification and Aerobic Denitrification in Thiosphaera-Pantotropha and Other Bacteria. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 57(3), 139-152.
Robertson, L.A., Kuenen, J.G. 1988. Heterotrophic Nitrification in Thiosphaera-Pantotropha - Oxygen-Uptake and Enzyme Studies. Journal of General Microbiology, 134, 857-863.
Rooney, T.C., Huibregtse, G.L. 1980. Increased Oxygen-Transfer Efficiency with Coarse Bubble Diffusers. Journal Water Pollution Control Federation, 52(9), 2315-2326.
Rotthauwe, J.H., Witzel, K.P., Liesack, W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol, 63(12), 4704-12.
Ruiz, G., Jeison, D., Chamy, R. 2003. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res, 37(6), 1371-7.
Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J.W., Schleifer, K.H., Wagner, M. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Systematic and Applied Microbiology, 23(1), 93-106.
Schmid, M., Walsh, K., Webb, R., Rijpstra, W.I.C., van de Pas-Schoonen, K., Verbruggen, M.J., Hill, T., Moffett, B., Fuerst, J., Schouten, S., Damste, J.S.S., Harris, J., Shaw, P., Jetten, M., Strous, M. 2003. Candidatus Scalindua brodae, sp nov., Candidatus Scalindua wagneri, sp nov., two new species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 26(4), 529-538.
Schmidt, I. 2009. Chemoorganoheterotrophic Growth of Nitrosomonas europaea and Nitrosomonas eutropha. Current Microbiology, 59(2), 130-138.
Schmidt, I., Bock, E. 1998. Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha. Antonie Van Leeuwenhoek, 73(3), 271-8.
Schmidt, I.I., Bock, E. 1997. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol, 167(2/3), 106-11.
Schramm, A., De Beer, D., Gieseke, A., Amann, R. 2000. Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm. Environ Microbiol, 2(6), 680-6.
Schramm, A., De Beer, D., Wagner, M., Amann, R. 1998. Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Environ Microbiol, 64(9), 3480-5.
Sharma, B., Ahlert, R.C. 1977. Nitrification and Nitrogen Removal. Water Research, 11(10), 897-925.
Sliekers, A.O., Haaijer, S., Schmid, M., Harhangi, H., Verwegen, K., Kuenen, J.G., Jetten, M.S. 2004. Nitrification and anammox with urea as the energy source. Systematic and Applied Microbiology, 27(3), 271-8.
Sliekers, A.O., Haaijer, S.C.M., Stafsnes, M.H., Kuenen, J.G., Jetten, M.S.M. 2005. Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations. Applied Microbiology and Biotechnology, 68(6), 808-817.
Sliekers, A.O., Third, K.A., Abma, W., Kuenen, J.G., Jetten, M.S. 2003. CANON and Anammox in a gas-lift reactor. Fems Microbiology Letters, 218(2), 339-44.
Starkenburg, S.R., Arp, D.J., Bottomley, P.J. 2008. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255. Environ Microbiol, 10(11), 3036-3042.
Stenstrom, M.K., Gilbert, R.G. 1981. Effects of Alpha-Factor, Beta-Factor and Theta-Factor Upon the Design, Specification and Operation of Aeration Systems. Water Res, 15(6), 643-654.
Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K.T., Webb, R., Kuenen, J.G., Jetten, M.S.M. 1999a. Missing lithotroph identified as new planctomycete. Nature, 400(6743), 446-449.
Strous, M., Heijnen, J.J., Kuenen, J.G., Jetten, M.S.M. 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 50(5), 589-596.
Strous, M., Kuenen, J.G., Jetten, M.S.M. 1999b. Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65(7), 3248-3250.
Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M.W., Horn, M., Daims, H., Bartol-Mavel, D., Wincker, P., Barbe, V., Fonknechten, N., Vallenet, D., Segurens, B., Schenowitz-Truong, C., Medigue, C., Collingro, A., Snel, B., Dutilh, B.E., Op den Camp, H.J.M., van der Drift, C., Cirpus, I., van de Pas-Schoonen, K.T., Harhangi, H.R., van Niftrik, L., Schmid, M., Keltjens, J., van de Vossenberg, J., Kartal, B., Meier, H., Frishman, D., Huynen, M.A., Mewes, H.W., Weissenbach, J., Jetten, M.S.M., Wagner, M., Le Paslier, D. 2006. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 440(7085), 790-794.
Strous, M., VanGerven, E., Zheng, P., Kuenen, J.G., Jetten, M.S.M. 1997. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Research, 31(8), 1955-1962.
Stuven, R., Vollmer, M., Bock, E. 1992. The Impact of Organic-Matter on Nitric-Oxide Formation by Nitrosomonas-Europaea. Archives of Microbiology, 158(6), 439-443.
Suwa, Y., Sumino, T., Noto, K. 1997. Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. J Gen Appl Microbiol, 43(6), 373-379.
Tang, C.J., Zheng, P., Wang, C.H., Mahmood, Q., Zhang, J.Q., Chen, X.G., Zhang, L., Chen, J.W. 2011. Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Research, 45(1), 135-144.
Tchobanoglous, G., Burton, F.L., Stensel, H.D. 2003. Wastewater engineering - treatment and reuse. Fourth ed. McGraw-Hill, New York.
Third, K.A., Sliekers, A.O., Kuenen, J.G., Jetten, M.S.M. 2001. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria. Systematic and Applied Microbiology, 24(4), 588-596.
Tokutomi, T., Kiyokawa, T., Shibayarna, C., Harada, H., Ohashi, A. 2006. Effect of inorganic carbon on nitrite accumulation in an aerobic granule reactor. Water Science and Technology, 53(12), 285-294.
Tokutomi, T., Shibayama, C., Soda, S., Ike, M. 2010. A novel control method for nitritation: The domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor. Water Research, 44(14), 4195-4203.
Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., Schleper, C. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol, 7(12), 1985-95.
Tsushima, I., Ogasawara, Y., Kindaichi, T., Satoh, H., Okabe, S. 2007a. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Research, 41(8), 1623-34.
Tsushima, I., Ogasawara, Y., Shimokawa, M., Kindaichi, T., Okabe, S. 2007b. Development of a super high-rate Anammox reactor and in situ analysis of biofilm structure and function. Water Sci Technol, 55(8-9), 9-17.
Turk, O., Mavinic, D.S. 1987. Benefits of Using Selective-Inhibition to Remove Nitrogen from Highly Nitrogenous Wastes. Environmental Technology Letters, 8(9), 419-426.
Turk, O., Mavinic, D.S. 1989. Maintaining Nitrite Buildup in a System Acclimated to Free Ammonia. Water Res, 23(11), 1383-1388.
van de Graaf, A.A., de Bruijn, P., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G. 1996. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-Uk, 142, 2187-2196.
van de Graaf, A.A., Mulder, A., de Bruijn, P., Jetten, M.S.M., Robertson, L.A., Kuenen, J.G. 1995. Anaerobic Oxidation of Ammonium Is a Biologically Mediated Process. Applied and Environmental Microbiology, 61(4), 1246-1251.
van der Star, W.R., Miclea, A.I., van Dongen, U.G., Muyzer, G., Picioreanu, C., van Loosdrecht, M.C. 2008. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnology and Bioengineering, 101(2), 286-94.
van der Star, W.R.L., Abma, W.R., Blommers, D., Mulder, J.W., Tokutomi, T., Strous, M., Picioreanu, C., Van Loosdrecht, M.C.M. 2007. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Research, 41(18), 4149-4163.
van Dongen, U., Jetten, M.S., van Loosdrecht, M.C. 2001. The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Sci Technol, 44(1), 153-60.
Van Hulle, S.W.H., Volcke, E.I.P., Teruel, J.L., Donckels, B., van Loosdrecht, M.C.M., Vanrolleghem, P.A. 2007. Influence of temperature and pH on the kinetics of the Sharon nitritation process. Journal of Chemical Technology and Biotechnology, 82(5), 471-480.
van Kempen, R., Mulder, J.W., Uijterlinde, C.A., Loosdrecht, M.C. 2001. Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci Technol, 44(1), 145-52.
Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., Fouts, D.E., Levy, S., Knap, A.H., Lomas, M.W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parsons, R., Baden-Tillson, H., Pfannkoch, C., Rogers, Y.H., Smith, H.O. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304(5667), 66-74.
Verstraete, W., Philips, S. 1998. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution, 102, 717-726.
Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, G.D. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7(3), 737-750.
Wachsmann, U., Rabiger, N., Vogelpohl, A. 1985. Influence of Geometry on Hydrodynamics and Mass-Transfer in a Compact Reactor. Chemie Ingenieur Technik, 57(4), 346-347.
Wang, C.C., Lee, P.H., Kumar, M., Huang, Y.T., Sung, S.W., Lin, J.G. 2010. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. Journal of Hazardous Materials, 175(1-3), 622-628.
Watson, S.W. 1971. Characteristics of 2 Marine Nitrite Oxidizing Bacteria, Nitrospina-Gracilis Nov-Gen-Nov-Sp and Nitrococcus-Mobilis Nov-Gen-Nov-Sp. Archiv Fur Mikrobiologie, 77(3), 203-&.
Wen, J.P., Ping, N., Lin, H., Chen, Y.L. 2002. Local overall gas-liquid mass transfer coefficient in a gas-liquid-solid reversed flow jet loop reactor. Chemical Engineering Journal, 88(1-3), 209-213.
Wett, B. 2006. Solved upscaling problems for implementing deammonification of rejection water. Water Science and Technology, 53(12), 121-128.
Wett, B., Murthy, S., Takács, I., Hell, M., Bowden, G., Deur, A., O'Shaughnessy, M. 2007. Key Parameters For Control of DEMON Deamonification Process. Water Practice, 1, 1-11.
Wiesmann, U. 1994. Biological nitrogen removal from wastewater Advances in Biochemical Engineering/Biotechnology, 51, 113-154.
Windey, K., De Bo, I., Verstraete, W. 2005. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water Research, 39(18), 4512-4520.
Winogradsky, S. 1890. Recherches sur les Organismes de la Nitrification. Comp Rendu, 110, 1013-1016.
Wyffels, S., Van Hulle, S.W., Boeckx, P., Volcke, E.I., Van Cleemput, O., Vanrolleghem, P.A., Verstraete, W. 2004. Modeling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor (MBR). Biotechnol Bioeng, 86(5), 531-42.
Yildiz, E., Keskinler, B., Pekdemir, T., Akay, G., Nuhoglu, A. 2005. High strength wastewater treatment in a jet loop membrane bioreactor: kinetics and performance evaluation. Chemical Engineering Science, 60(4), 1103-1116.
Yuan, Q., Oleszkiewicz, J.A. 2011. Low temperature biological phosphorus removal and partial nitrification in a pilot sequencing batch reactor system. Water Sci Technol, 63(12), 2802-7.
Zhang, L., Yang, J., Furukawa, K. 2010. Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox. J Biosci Bioeng, 110(4), 441-8.
Zumft, W.G. 1997. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 61(4), 533-616.
Zwietering, M.H., Dekoos, J.T., Hasenack, B.E., Dewit, J.C., Vantriet, K. 1991. Modeling of Bacterial-Growth as a Function of Temperature. Applied and Environmental Microbiology, 57(4), 1094-1101.

朱敬平、鍾裕仁、許國恩、黃欣桐、江家菱、王郁萱、烏春梅、吳碩傳. 2011. 產業廢水汙染調查及管制措施研議計畫 (第三年)
李雅菁、黃良銘. 2010. 針對TFT-LCD製程廢水實廠進行硝化效能評估與氨氧化菌群生態之研究. 國立成功大學環境工程研究所碩士論文
林翰璘、鄭幸雄. 2011. 三段式厭氧水解/亞硝酸化/厭氧氨氧化程序處理含氮光電廢水之永續技術開發. 國立成功大學環境工程研究所碩士論文
夏惠萍、鄭幸雄. 2010. 光電廢水生物除氮程序模型場功能評估與微生物指標建立. 國立成功大學環境工程研究所碩士論文
陳廷光, 陳重男, 倪振鴻. 2002. GREEN MEMBIOR®生物薄膜程序處理TFT-LCD製程有機廢水之研究. 第27屆廢水處理技術研討會論文.
陳賢焜、鄭幸雄. 1994. 生物膜硝化脫硝程序處理高濃度氨氮廢水之研究. 國立成功大學環境工程研究所博士論文
莊蕙萍、鄭幸雄. 2004. 三段式流體化床生物程序分解PAN廢水之族群變化與功能評估. 國立成功大學環境工程研究所碩士論文
黃淑君、鄭幸雄. 2005. 不織布薄膜反應槽好氧生物分解光電廢水程序功能及生態變化之研究. 國立成功大學環境工程研究所碩士論文
楊雅斐、鄭幸雄. 2004. 三段生物程序中好氧硝化槽功能評估與分生檢測生態研究. 國立成功大學環境工程研究所碩士論文

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊