|
An, D.S., Im, W.T., Yang, H.C., Kang, M.S., Kim, K.K., Jin, L., Kim, M.K., Lee, S.T. 2005. Cellulomonas terrae sp nov., a cellulolytic and xylanolytic bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 55, 1705-1709. Andreesen, J.R., Bahl, H., Gottschalk, G. 1989. Introduction to the physiology and biochemistry of genus Clostridium. in: Clostridia, (Eds.) N.P. Minton, D.J. Clarke, Plenum Press. New York, pp. 27-62. Angelidaki, I., Petersen, S.P., Ahring, B.K. 1990. Effects of Lipids on Thermophilic Anaerobic-Digestion and Reduction of Lipid Inhibition Upon Addition of Bentonite. Applied Microbiology and Biotechnology, 33(4), 469-472. APHA, AWWA, WEF. 2005. Standard Methods for the Examination of Water and Wastewater. 21th ed. American Public Health Association, New York. Bahl, H., Dürre, P. 1993. Clostridia. 2nd ed. in: Biotechnology: A Multi-Volume Comprehensive Treatise, (Eds.) H.-J. Rehm, G. Reed, Vol. 1, Wiley-VCH Verlag GmbH. Weinheim, Germany. Bakalidou, A., Kampfer, P., Berchtold, M., Kuhnigk, T., Wenzel, M., Konig, H. 2002. Cellulosimicrobium variabile sp nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. International Journal of Systematic and Evolutionary Microbiology, 52, 1185-1192. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A. 2002. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 45(10), 65-73. Bayer, E.A., Belaich, J.P., Shoham, Y., Lamed, R. 2004. The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiology, 58, 521-554. Berger, E., Jones, W.A., Jones, D.T., Woods, D.R. 1990. Sequencing and Expression of a Cellodextrinase (Ced1) Gene from Butyrivibrio-Fibrisolvens H17c Cloned in Escherichia-Coli. Molecular & General Genetics, 223(2), 310-318. Bhat, M.K., Bhat, S. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 15(3-4), 583-620. Bockris, J.O.M. 2002. The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment. International Journal of Hydrogen Energy, 27(7-8), 731-740. Bredholt, S., Sonne-Hansen, J., Nielsen, P., Mathrani, I.M., Ahring, B.K. 1999. Caldicellulosiruptor kristjanssonii sp nov., a cellulolytic extremely thermophilic, anaerobic bacterium. International Journal of Systematic Bacteriology, 49, 991-996. Calusinska, M., Happe, T., Joris, B., Wilmotte, A. 2010. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. Microbiology-Sgm, 156, 1575-1588. Canganella, F., Wiegel, J. 1993. The potential of thermophilic clostridia in biotechnology. in: The Clostridia and biotechnology, (Ed.) D.R. Woods, Vol. 25, Butterworth-Heinemann. Boston, pp. 393-429. Cann, I.K.O., Kocherginskaya, S., King, M.R., White, B.A., Mackie, R.I. 1999. Molecular cloning, sequencing, and expression of a novel multidomain mannanase gene from Thermoanaerobacterium polysaccharolyticum. Journal of Bacteriology, 181(5), 1643-1651. Cann, I.K.O., Stroot, P.G., Mackie, K.R., White, B.A., Mackie, R.I. 2001. Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp nov and Thermoanaerobacterium zeae sp nov., and emendation of the genus Thermoanaerobacterium. International Journal of Systematic and Evolutionary Microbiology, 51, 293-302. Chang, F.Y., Lin, C.Y. 2004. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. International Journal of Hydrogen Energy, 29(1), 33-39. Chen, J.Q., Weimer, P.J. 2001. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiology-Uk, 147, 21-30. Cheng, S.-S., Ohashi, A., Horisawa, K., Tien, Y.-M., Yang, G.-H. 2006. Kinetic and Biodegradability Assay of Acclimated Anaerobic Microbes Digesting Waste Activated Sludge in Sewage Treatment Plant. in: The 7th International Symposium on Global Renaissance by Green Energy Revolution. Nagaoka Japan. Cheng, S., Lin, C., Tseng, I., Lee, C., Lin, H., Lin, M., Chen, S., Chen, S., Liu, P. 2003. Biohydrogen production mechanisms and processes application on multiple substrates. in: Proc. of 1st NRL International Workshop on Innovative Anaerobic Technology. Daejeon, Korea, pp. 33-39. Cho, K.M., Hong, S.Y., Lee, S.M., Kim, Y.H., Kahng, G.G., Kim, H., Yun, H.D. 2006. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Applied Microbiology and Biotechnology, 73(3), 618-630. Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J.J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., Farrow, J.A. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. International Journal of Systematic Bacteriology, 44(4), 812-26. Das, D., Veziroglu, T.N. 2001. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1), 13-28. Demain, A.L., Newcomb, M., Wu, J.H.D. 2005. Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews, 69(1), 124-+. Desvaux, M. 2005. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. Fems Microbiology Reviews, 29(4), 741-764. Desvaux, M. 2006. Unravelling carbon metabolism in anaerobic cellulolytic bacteria. Biotechnology Progress, 22(5), 1229-1238. Ding, S.Y., Bayer, E.A., Steiner, D., Shoham, Y., Lamed, R. 1999. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. Journal of Bacteriology, 181(21), 6720-6729. Ding, S.Y., Bayer, E.A., Steiner, D., Shoham, Y., Lamed, R. 2000. A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. Journal of Bacteriology, 182(17), 4915-4925. Ding, S.Y., Himmel, M.E. 2006. The maize primary cell wall microfibril: A new model derived from direct visualization. Journal of Agricultural and Food Chemistry, 54(3), 597-606. Erkel, C., Kube, M., Reinhardt, R., Liesack, W. 2006. Genome of Rice Cluster I archaea - the key methane producers in the rice rhizosphere. Science, 313(5785), 370-372. Evert, R.F. 2006. Esau's Plant Anatomy. 3rd ed. Wiley-Liss. Fabiano, B., Perego, P. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. International Journal of Hydrogen Energy, 27(2), 149-156. Fang, H.H.P., Liu, H. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 82(1), 87-93. Ferry, J.G. 2010. Biochemistry of Acetotrophic Methanogenesis. in: Handbook of hydrocarbon and lipid microbiology, (Ed.) K.N. Timmis, Vol. 1, Springer. Berlin ; London, pp. 357-367. Ferry, J.G. 1999. Enzymology of one-carbon metabolism in methanogenic pathways. Fems Microbiology Reviews, 23(1), 13-38. Fujino, E., Fujino, T., Karita, S., Kimura, T., Sakka, K., Ohmiya, K. 1999. Purification and characterization of the Clostridium josui porphobilinogen deaminase encoded by the hemC gene from a recombinant Escherichia coli. J Biosci Bioeng, 87(4), 535-7. Gal, L., Pages, S., Gaudin, C., Belaich, A., ReverbelLeroy, C., Tardif, C., Belaich, J.P. 1997. Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Applied and Environmental Microbiology, 63(3), 903-909. Ghose, T.K. 1987. Measurement of Cellulase Activities. Pure and Applied Chemistry, 59(2), 257-268. Girbal, L., Soucaille, P. 1994. Regulation of Clostridium-Acetobutylicum Metabolism as Revealed by Mixed-Substrate Steady-State Continuous Cultures - Role of Nadh/Nad Ratio and Atp Pool. Journal of Bacteriology, 176(21), 6433-6438. Gottschalk, G. 1985. Bacterial Metabolism. 2nd ed. Springer-Verlag, New York. Hefner, R.A. 2002. The age of energy gases. International Journal of Hydrogen Energy, 27(1), 1-9. Hethener, P., Brauman, A., Garcia, J.L. 1992. Clostridium-Termitidis Sp-Nov, a Cellulolytic Bacterium from the Gut of the Wood-Feeding Termite, Nasutitermes-Lujae. Systematic and Applied Microbiology, 15(1), 52-58. Heyndrickx, M., Vauterin, L., Vandamme, P., Kersters, K., DeVos, P. 1996. Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. Journal of Microbiological Methods, 26(3), 247-259. Hippe, H., Andreesen, J., Gottschalk, G. 1992. The Genus Clostridium - Nonmedical. 2nd ed. in: The Prokaryotes, (Eds.) H. Balows, H. Truper, M. Dworkin, W. Hareder, K. Schleifer, Vol. 3, Springer-Verlag. New York, pp. 1800-1825. Jeong, H., Yi, H., Sekiguchi, Y., Muramatsu, M., Kamagata, Y., Chun, J. 2004. Clostridium jejuense sp nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 54, 1465-1468. Jetten, M.S.M., Stams, A.J.M., Zehnder, A.J.B. 1992. Methanogenesis from Acetate - a Comparison of the Acetate Metabolism in Methanothrix-Soehngenii and Methanosarcina Spp. Fems Microbiology Reviews, 88(3-4), 181-197. Kadar, Z., De Vrijek, T., van Noorden, G.E., Budde, M.A.W., Szengyel, Z., Reczey, K., Claassen, P.A.M. 2004. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Applied Biochemistry and Biotechnology, 113, 497-508. Kahel-Raifer, H., Jindou, S., Bahari, L., Nataf, Y., Shoham, Y., Bayer, E.A., Borovok, I., Lamed, R. 2010. The unique set of putative membrane-associated anti-Sigma factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. Fems Microbiology Letters, 308(1), 84-93. Kalia, V.C., Jain, S.R., Kumar, A., Joshi, A.P. 1994. Frementation of biowaste to H2 by Bacillus licheniformis. world journal of microbiology and biotechnology, 10(2), 224-227. Kato, S., Haruta, S., Cui, Z.J., Ishii, M., Igarashi, Y. 2004. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. Fems Microbiology Ecology, 51(1), 133-142. Kelly, W.J., Asmundson, R.V., Hopcroft, D.H. 1987. Isolation and Characterization of a Strictly Anaerobic, Cellulolytic Spore Former - Clostridium-Chartatabidum Sp-Nov. Archives of Microbiology, 147(2), 169-173. Keltjen, J.T., Vogel, G.D. 1993. Conversion of methanol and methylamines to methane and carbon dioxide. in: Methanogenesis, (Ed.) J.G. Ferry, Chapman & Hall. New York, pp. 253-303. Kim, C.H. 1995. Characterization and Substrate-Specificity of an Endo-Beta-1,4-D-Glucanase-I (Avicelase-I) from an Extracellular Multienzyme Complex of Bacillus-Circulans. Applied and Environmental Microbiology, 61(3), 959-965. Kirby, J., Martin, J.C., Daniel, A.S., Flint, H.J. 1997. Dockerin-like sequences in cellulases and xylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens. Fems Microbiology Letters, 149(2), 213-219. Ko, C.H., Chen, W.L., Tsai, C.H., Jane, W.N., Liu, C.C., Tu, J. 2007. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresource Technology, 98(14), 2727-2733. Kotay, S.M., Das, D. 2008. Biohydrogen as a renewable energy resource - Prospects and potentials. International Journal of Hydrogen Energy, 33(1), 258-263. Kumar, N., Das, D. 2001. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme and Microbial Technology, 29(4-5), 280-287. Kumar, N., Das, D. 2000. Production and purification of alpha-amylase from hydrogen producing Enterobacter cloacae IIT-BT 08. Bioprocess Engineering, 23(2), 205-208. Kumar, R., Singh, S., Singh, O.V. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5), 377-391. Lamed, R., Morag, E., Moryosef, O., Bayer, E.A. 1991. Cellulosome-Like Entities in Bacteroides-Cellulosolvens. Current Microbiology, 22(1), 27-33. Lamed, R., Naimark, J., Morgenstern, E., Bayer, E.A. 1987. Specialized Cell-Surface Structures in Cellulolytic Bacteria. Journal of Bacteriology, 169(8), 3792-3800. Lamed, R., Setter, E., Bayer, E.A. 1983. Characterization of a Cellulose-Binding, Cellulase-Containing Complex in Clostridium-Thermocellum. Journal of Bacteriology, 156(2), 828-836. Lay, J.J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnology and Bioengineering, 68(3), 269-278. Lee, D., Li, Y., Noike, T. 2004(b). Influent of substrate concentration on the biohydrogen production in membrane bioreactor. in: Proc. of 2nd International Workshop on Innovative Anaerobic Technology. Sendai, Japan, pp. 97-100. Lee, K.S., Wu, J.F., Lo, Y.S., Lo, Y.C., Lin, P.J., Chang, J.S. 2004(a). Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnology and Bioengineering, 87(5), 648-657. Lee, Y.E., Jain, M.K., Lee, C.Y., Lowe, S.E., Zeikus, J.G. 1993. Taxonomic Distinction of Saccharolytic Thermophilic Anaerobes - Description of Thermoanaerobacterium-Xylanolyticum Gen-Nov, Sp-Nov, and Thermoanaerobacterium-Saccharolyticum Gen-Nov, Sp-Nov - Reclassification of Thermoanaerobium-Brockii, Clostridium-Thermosulfurogenes, and Clostridium-Thermohydrosulfuricum E100-69 as Thermoanaerobacter-Brockii Comb-Nov, Thermoanaerobacterium-Thermosulfurigenes Comb-Nov, and Thermoanaerobacter-Thermohydrosulfuricus Comb-Nov, Respectively - and Transfer of Clostridium-Thermohydrosulfuricum 39e to Thermoanaerobacter-Ethanolicus. International Journal of Systematic Bacteriology, 43(1), 41-51. Leroux, F., Dementin, S., Burlatt, B., Cournac, L., Volbeda, A., Champ, S., Martin, L., Guigliarelli, B., Bertrand, P., Fontecilla-Camps, J., Rousset, M., Leger, C. 2008. Experimental approaches to kinetics of gas diffusion in hydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11188-11193. Li, C.L., Fang, H.H.P. 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37(1), 1-39. Li, M., Liu, M.Y., Le Gall, J., Gui, L.L., Liao, J., Jiang, T., Zhang, J.P., Liang, D.C., Chang, W.R. 2003. Crystal structure studies on rubrerythrin: enzymatic activity in relation to the zinc movement. Journal of Biological Inorganic Chemistry, 8(1-2), 149-155. Lin, C.Y., Lay, C.H. 2004. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. International Journal of Hydrogen Energy, 29(3), 275-281. Liou, J.S.C., Balkwill, D.L., Drake, G.R., Tanner, R.S. 2005. Clostridium carboxidivorans sp nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp nov. International Journal of Systematic and Evolutionary Microbiology, 55, 2085-2091. Liu, S.Y., Rainey, F.A., Morgan, H.W., Mayer, F., Wiegel, J. 1996. Thermoanaerobacterium aotearoense sp nov, a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. International Journal of Systematic Bacteriology, 46(2), 388-396. Liu, Y. 2010(b). Methanobacteriales. in: Handbook of hydrocarbon and lipid microbiology, (Ed.) K.N. Timmis, Vol. 1, Springer. Berlin ; London, pp. 559-571. Liu, Y. 2010(c). Methanococcales. in: Handbook of hydrocarbon and lipid microbiology, (Ed.) K.N. Timmis, Vol. 1, Springer. Berlin ; London, pp. 573-581. Liu, Y. 2010(d). Methanomicrobiales. in: Handbook of hydrocarbon and lipid microbiology, (Ed.) K.N. Timmis, Vol. 1, Springer. Berlin ; London, pp. 583-593. Liu, Y. 2010(f). Methanopyrales. in: Handbook of hydrocarbon and lipid microbiology, (Ed.) K.N. Timmis, Vol. 1, Springer. Berlin ; London, pp. 605-607. Liu, Y. 2010(e). Methanosarcinales. in: Handbook of hydrocarbon and lipid microbiology, (Ed.) K.N. Timmis, Vol. 1, Springer. Berlin ; London, pp. 595-604. Liu, Y. 2010(a). Taxonomy of Methanogens. in: Handbook of hydrocarbon and lipid microbiology, (Ed.) K.N. Timmis, Vol. 1, Springer. Berlin ; London, pp. 549-557. Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S. 2002a. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506-577. Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S. 2002b. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506-+. Mendez, B.S., Pettinari, M.J., Ivanier, S.E., Ramos, C.A., Sineriz, F. 1991. Clostridium-Thermopapyrolyticum Sp-Nov, a Cellulolytic Thermophile. International Journal of Systematic Bacteriology, 41(2), 281-283. Mergaert, J., Lednicka, D., Goris, J., Cnockaert, M.C., De Vos, P., Swings, J. 2003. Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp nov., Cellvibrio fibrivorans sp nov and Cellvibrio gandavensis sp nov. International Journal of Systematic and Evolutionary Microbiology, 53, 465-471. Miron, J., Ben-Ghedalla, D., Morrison, M. 2001. Invited review: Adhesion mechanisms of rumen cellulolytic bacteria. Journal of Dairy Science, 84(6), 1294-1309. Miron, J., Forsberg, C.W. 1999. Characterisation of cellulose-binding proteins that are involved in the adhesion mechanism of Fibrobacter intestinalis DR7. Applied Microbiology and Biotechnology, 51(4), 491-497. Miyake, J. 1998. The science of biohydrogen: an energetic view. in: Biohydrogen, (Ed.) O.R. Zaborsky, Plenum Press. New York, pp. 7-18. Mladenovska, Z., Mathrani, I.M., Ahring, B.K. 1995. Isolation and Characterization of Caldicellulosiruptor Lactoaceticus Sp-Nov, an Extremely Thermophilic, Cellulolytic, Anaerobic Bacterium. Archives of Microbiology, 163(3), 223-230. Monserrate, E., Leschine, S.B., Canale-Parola, E. 2001. Clostridium hungatei sp. nov., a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. Int J Syst Evol Microbiol, 51(Pt 1), 123-32. Morrison, M., Miron, J. 2000. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? Fems Microbiology Letters, 185(2), 109-115. Murray, W.D., Hofmann, L., Campbell, N.L., Madden, R.H. 1986. Clostridium-Lentocellum Sp-Nov, a Cellulolytic Species from River Sediment Containing Paper-Mill Waste. Systematic and Applied Microbiology, 8(3), 181-184. Nogi, Y., Takami, H., Horikoshi, K. 2005. Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. International Journal of Systematic and Evolutionary Microbiology, 55, 2309-2315. O-Thong, S., Prasertsan, P., Karakashev, D., Angelidaki, I. 2008. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. International Journal of Hydrogen Energy, 33(4), 1204-1214. Oh, S.E., Lyer, P., Bruns, M.A., Logan, B.E. 2004(b). Biological hydrogen production using a membrane bioreactor. Biotechnology and Bioengineering, 87(1), 119-127. Oh, Y.K., Kim, S.H., Kim, M.S., Park, S. 2004(a). Thermophilic biohydrogen production from glucose with trickling biofilter. Biotechnology and Bioengineering, 88(6), 690-698. Ohara, H., Karita, S., Kimura, T., Sakka, K., Ohmiya, K. 2000. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Bioscience Biotechnology and Biochemistry, 64(2), 254-260. Owen, W.F., Stuckey, D.C., Healy, J.B., Young, L.Y., Mccarty, P.L. 1979. Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity. Water Research, 13(6), 485-492. Palop, M.L., Valles, S., Pinaga, F., Flors, A. 1989. Isolation and Characterization of an Anaerobic, Celluloytic Bacterium, Clostridium-Celerecrescens Sp-Nov. International Journal of Systematic Bacteriology, 39(1), 68-71. Pason, P., Kyu, K.L., Ratanakhanokchai, K. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Applied and Environmental Microbiology, 72(4), 2483-2490. Patel, M.A., Ou, M.S., Harbrucker, R., Aldrich, H.C., Buszko, M.L., Ingram, L.O., Shanmugam, K.T. 2006. Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Applied and Environmental Microbiology, 72(5), 3228-3235. Pierik, A.J., Wolbert, R.B.G., Portier, G.L., Verhagen, M.F.J.M., Hagen, W.R. 1993. Nigerythrin and Rubrerythrin from Desulfovibrio-Vulgaris Each Contain 2 Mononuclear Iron Centers and 2 Dinuclear Iron Clusters. European Journal of Biochemistry, 212(1), 237-245. Pohlschroder, M., Canaleparola, E., Leschine, S.B. 1995. Ultrastructural Diversity of the Cellulase Complexes of Clostridium Papyrosolvens C7. Journal of Bacteriology, 177(22), 6625-6629. Rainey, F.A., Donnison, A.M., Janssen, P.H., Saul, D., Rodrigo, A., Bergquist, P.L., Daniel, R.M., Stackebrandt, E., Morgan, H.W. 1994. Description of Caldicellulosiruptor-Saccharolyticus Gen-Nov, Sp-Nov - an Obligately Anaerobic, Extremely Thermophilic, Cellulolytic Bacterium. Fems Microbiology Letters, 120(3), 263-266. Raman, B., McKeown, C.K., Rodriguez, M., Brown, S.D., Mielenz, J.R. 2011. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. Bmc Microbiology, 11. Reith, J.H., Wijffels, R.H., Barten, H. 2003. Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation. Rittmann, B.E., McCarty, P.L. 2001a. Environmental biotechnology : principles and applications. McGraw-Hill, Boston. Rittmann, B.E., McCarty, P.L. 2001b. Environmental Biotechnology: Principles and Applications. McGraw-Hill, New York. Rivas, R., Garcia-Fraile, P., Mateos, P.F., Martinez-Molina, E., Velazquez, E. 2006. Paenibacillus cellulosilyticus sp nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. International Journal of Systematic and Evolutionary Microbiology, 56, 2777-2781. Rother, M. 2010. Methanogenesis. in: Handbook of hydrocarbon and lipid microbiology, (Ed.) K.N. Timmis, Vol. 1, Springer. Berlin ; London, pp. 483-499. Sakai, S., Imachi, H., Hanada, S., Ohashi, A., Harada, H., Kamagata, Y. 2008. Methanocella paludicola gen. nov., sp nov., a methane-producing archaeon, the first isolate of the lineage 'Rice Cluster I', and proposal of the new archaeal order Methanocellales ord. nov. International Journal of Systematic and Evolutionary Microbiology, 58, 929-936. Sakai, S., Imachi, H., Sekiguchi, Y., Ohashi, A., Harada, H., Kamagata, Y. 2007. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Applied and Environmental Microbiology, 73(13), 4326-4331. Schut, G.J., Adams, M.W.W. 2009. The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production. Journal of Bacteriology, 191(13), 4451-4457. Schwartz, R.D., Keller, F.A. 1982. Acetic-Acid Production by Clostridium-Thermoaceticum in Ph-Controlled Batch Fermentations at Acidic Ph. Applied and Environmental Microbiology, 43(6), 1385-1392. Schwarz, W.H., Bronnenmeier, K., Landmann, B., Wanner, G., Staudenbauer, W.L., Kurose, N., Takayama, T. 1995. Molecular Characterization of 4 Strains of the Cellulolytic Thermophile Clostridium-Stercorarium. Bioscience Biotechnology and Biochemistry, 59(9), 1661-1665. Semedo, L.T.A.S., Gomes, R.C., Linhares, A.A., Duarte, G.F., Nascimento, R.P., Rosado, A.S., Margis-Pinheiro, M., Margis, R., Silva, K.R.A., Alviano, C.S., Manfio, G.P., Soares, R.M.A., Linhares, L.F., Coelho, R.R.R. 2004. Streptomyces drozdowiczii sp nov., a novel cellulolytic streptomycete from soil in Brazil. International Journal of Systematic and Evolutionary Microbiology, 54, 1323-1328. Shi, Y., Weimer, P.J. 1997. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Applied and Environmental Microbiology, 63(2), 743-748. Shima, S., Thauer, R.K. 2007. A third type of hydrogenase catalyzing H2 activation. Chem Rec, 7(1), 37-46. Sleat, R., Mah, R.A. 1985. Clostridium-Populeti Sp-Nov, a Cellulolytic Species from a Woody-Biomass Digester. International Journal of Systematic Bacteriology, 35(2), 160-163. Taguchi, F., Chang, J.D., Mizukami, N., Saitotaki, T., Hasegawa, K., Morimoto, M. 1993. Isolation of a Hydrogen-Producing Bacterium, Clostridium-Beijerinckii Strain Am21b, from Termites. Canadian Journal of Microbiology, 39(7), 726-730. Takahata, Y., Nishijima, M., Hoaki, T., Maruyama, T. 2001. Thermotoga petrophila sp nov and Thermotoga naphthophila sp nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. International Journal of Systematic and Evolutionary Microbiology, 51, 1901-1909. Tamaru, Y., Ui, S., Murashima, K., Kosugi, A., Chan, H., Doi, R.H., Liu, B. 2002. Formation of protoplasts from cultured tobacco cells and Arabidopsis thaliana by the action of cellulosomes and pectate lyase from Clostridium cellulovorans. Applied and Environmental Microbiology, 68(5), 2614-2618. Tanisho, S., Kuromoto, M., Kadokura, N. 1998. Effect of CO2 removal on hydrogen production by fermentation. International Journal of Hydrogen Energy, 23(7), 559-563. Tanisho, S., Wakao, N., Kosako, Y. 1983. Biological Hydrogen-Production by Enterobacter-Aerogenes. Journal of Chemical Engineering of Japan, 16(6), 529-530. Thauer, R.K., Shima, S. 2008. Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci, 1125, 158-70. Tomme, P., Warren, R.A., Gilkes, N.R. 1995. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol, 37, 1-81. Ueno, Y., Haruta, S., Ishii, M., Igarashi, Y. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Applied Microbiology and Biotechnology, 57(4), 555-562. Updegraf.Dm. 1969. Semimicro Determination of Cellulose in Biological Materials. Analytical Biochemistry, 32(3), 420-&. van Niel, E.W.J., Budde, M.A.W., de Haas, G.G., van der Wal, F.J., Claasen, P.A.M., Stams, A.J.M. 2002. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. International Journal of Hydrogen Energy, 27(11-12), 1391-1398. Varel, V.H., Pond, W.G. 1992. Characteristics of a New Cellulolytic Clostridium Sp Isolated from Pig Intestinal-Tract. Applied and Environmental Microbiology, 58(5), 1645-1649. Varel, V.H., Yen, J.T., Kreikemeier, K.K. 1995. Addition of Cellulolytic Clostridia to the Bovine Rumen and Pig Intestinal-Tract. Applied and Environmental Microbiology, 61(3), 1116-1119. Viamajala, S., Selig, M.J., Vinzant, T.B., Tucker, M.P., Himmel, M.E., McMillan, J.D., Decker, S.R. 2006. Catalyst transport in corn stover internodes - Elucidating transport mechanisms using Direct Blue-I. Applied Biochemistry and Biotechnology, 130(1-3), 509-527. Vignais, P.M. 2008. Hydrogenases and H(+)-reduction in primary energy conservation. Results Probl Cell Differ, 45, 223-52. Vignais, P.M. 2009. Regulation of Hydrogenase Gene Expression. in: The Purple Phototrophic Bacteria, (Eds.) C.N. Hunter, F. Daldal, M.C. Thurnauer, J.T. Beatty, Vol. 28, Springer. Netherlands, pp. 743-757. Vignais, P.M., Billoud, B., Meyer, J. 2001. Classification and phylogeny of hydrogenases. Fems Microbiology Reviews, 25(4), 455-501. Vogel, J. 2008. Unique aspects of the grass cell wall. Current Opinion in Plant Biology, 11(3), 301-307. Warnick, T.A., Methe, B.A., Leschine, S.B. 2002. Clostridium phytofermentans sp nov., a cellulolytic mesophile from forest soil. International Journal of Systematic and Evolutionary Microbiology, 52, 1155-1160. Warren, R.A.J. 1996. Microbial hydrolysis of polysaccharides. Annual Review of Microbiology, 50, 183-212. Weimer, P.J. 1996. Why don't ruminal bacteria digest cellulose faster? Journal of Dairy Science, 79(8), 1496-1502. Wenzel, M., Schonig, I., Berchtold, M., Kampfer, P., Konig, H. 2002. Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology, 92(1), 32-40. Yang, J.C., Chynoweth, D.P., Williams, D.S., Li, A. 1990. Clostridium-Aldrichii Sp-Nov, a Cellulolytic Mesophile Inhabiting a Wood-Fermenting Anaerobic Digester. International Journal of Systematic Bacteriology, 40(3), 268-272. Yoda, K., Toyoda, A., Mukoyama, Y., Nakamura, Y., Minato, H. 2005. Cloning, sequencing, and expression of a Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) with novel carbohydrate-binding modules, and properties of Cel5A. Applied and Environmental Microbiology, 71(10), 5787-5793. Yokoi, H., Mori, S., Hirose, J., Hayashi, S., Takasaki, Y. 1998. H-2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnology Letters, 20(9), 895-899. Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S., Takasaki, Y. 1995. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. Journal of Fermentation and Bioengineering, 80(6), 571-574. Zverlov, V., Mahr, S., Riedel, K., Bronnenmeier, K. 1998. Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile 'Anaerocellum thermophilum' with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology-Uk, 144, 457-465. Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Vantriet, K. 1990. Modeling of the Bacterial-Growth Curve. Applied and Environmental Microbiology, 56(6), 1875-1881. 王郁萱. 2008. 高溫廚餘厭氧氫醱酵程序控制與水解機制之研究. in: 環境工程學系, 國立成功大學. 台南. 鍾承翰. 2009. 嗜熱厭氧菌Clostridium thermocellum strain TCW1水解纖維素產氫之研究. in: 環境科學與工程學系, 東海大學. 台中. 張仕旻. 2001. 利用薄膜反應器於高溫厭氧產氫生物程序之研究. in: 環境工程學系, 成功大學. 陳柏匡. 2011. 以兩段式程序將有機廢棄物轉化成生質氫氣及生質甲烷之研究. in: 環境工程學系, 國立成功大學. 台南. 陳怡傑. 2009. 以厭氧流體化床進行廚餘過篩液及狼尾草之氫醱酵程序研究. in: 環境工程學系, 國立成功大學. 台南. 李澤坤. 2008. 蔬菜廚餘厭氧氫醱酵程序及流體化床醱酵槽改良設計之研究. in: 環境工程學系, 國立成功大學. 台南. 林建勝. 2007. 以生質能源程序探討廚餘厭氧氫醱酵之研究. in: 環境工程學系, 國立成功大學. 台南. 傅子寧. 2009. 牛糞肥中一株嗜熱厭氧纖維水解菌Clostridium sp. TCW1之分離鑑定及纖維素醣化特性研究. in: 環境科學與工程學系, 東海大學. 台中. 蔡淑華. 2005. 植物解剖學. 國立編譯館.
|