跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 11:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昶均
研究生(外文):Chang-ChunChen
論文名稱:兩相式厭氧生質能源程序探討廚餘與狼尾草共醱酵產氫產甲烷之研究
論文名稱(外文):Two-phase Anaerobic Fermentative Process Study on Hydrogen and Methane Production with Combined Feeding of Kitchen Waste and Napiergrass
指導教授:鄭幸雄鄭幸雄引用關係
指導教授(外文):Sheng-Shung Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:168
中文關鍵詞:兩相式程序廚餘狼尾草生質能源油脂
外文關鍵詞:two-phase processkitchen wastenapiergrassbioenergylipid
相關次數:
  • 被引用被引用:3
  • 點閱點閱:846
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
現代社會對於石化資源的需求日益增加,但其消耗量遠遠超過其生成之速度,在可預見的未來人類勢必面臨石化能源短缺的問題。再者由於石化燃料的使用,使得二氧化碳過量排放而造成溫室效應逐年加劇,被視為是全球氣候變遷的主因。台灣原本主要的化石能源有90%以上皆是仰賴進口,6%則是核能原料,如今在能源短缺和永續發展的雙重議題下,更有開發替代性再生能源的迫切性及必要性。而本島地區氣候溫熱潮濕,適合生質作物、各種動植物和微生物的多樣性持續生長,發展生質能源程序有其前瞻性以及先天優勢存在。此外我國人口密集,易於推動都市有機廢棄物集中清運,於2011年為止,台灣的廚餘日回收量可達2,200噸,佔人口普及率之三分之一,尚有向上成長的空間,若能妥善利用廚餘此一富含有機碳之有機廢棄物,可作為生質能源程序中充足的物料來源。
本研究中採用廚餘以及狼尾草作為兩相式厭氧醱酵程序之基質物料,,藉此達到生質氫氣與甲烷的回收和有機廢棄物的再利用。廚餘屬於高濃度有機固體廢棄物,(總COD濃度可達313.8 g/L,揮發性固體物濃度約152 g/L),含水率則約80%,有機成分組成為油脂最多,碳水化合物居次,蛋白質最末,分別占總COD之34.5%、30%,以及24.7%。此外由於台灣氣候溼熱,造成廚餘在一天清運過程中即有部分被微生物酸化水解,由其特性分析可監測到揮發酸(主要產物為乳酸,濃度約9,000 mg/L,乙酸次之,約2,000 mg/L)和氨氮(約110 mg N/L)的生成。狼尾草則是台灣主要牧草和野生雜草之一,碳水化合物佔了總乾重之55%,若能被微生物有效水解其木質纖維結構則是相當適合作為能源作物的物種。
為了提升微生物對於複合基質的利用效率,於本研究採用兩階段式的厭氧暗醱酵程序,且操作在高溫55oC環境下。第一段以三組CSTR並聯操作為水解酸化槽之比較試驗,並提供高體積負荷使其併有氫氣回收之效益,第二段則承接酸化槽出流液,以蛋形消化槽之形式串聯操作,達到生質甲烷的生成並穩定有機物。酸化產氫槽三槽之HRT皆為8天,負荷分別控制在10、15以及20 g COD/L-day,在操作344天後,基質部分有90%以上的碳水化合物轉化效率,VSS則維持約30%之去除率,纖維素轉化率較不明顯,僅有20%。產氫速率方面,三槽分別可維持在0.9、1.2和1.0 L H2/L-day,氫氣比例45%。而在甲烷消化槽方面,最終穩定操作時,HRT為30天,體積負荷為3.5 g COD/L-day,有80%之COD去除率和70%之VSS轉化率,其中對於油脂和纖維素亦具90%的轉換效率。甲烷生成方面則有平均產氣速率1.0 L CH4/L-day以及甲烷比例70%之產氣表現。

In moder society, the request of fossil resource increases more and more with each passing day. However, the consumption of fossil fuels is quite larger than its formation. In the future human beings will face the problem of fossil fuel shortage. Moreover, the overemission of CO2 by using fossil fuel is thought to be one of the reasons of global warning which leads to climate change. In Taiwan, over 90 % of energy supply comes from import of fossil fuel, and 6 % is from nuclear energy. In consideration of energy shortage and sustainable development, it is necessary to exploit renewable energy to take the place of fossil energy. The innate advantages of developing bioenergy in Taiwan include the hot and humid climate, which is beneficial for the growth of energy crops, and also the abundant microbial diversity. In addition, the recycle of kitchen waste achieved to 2,300 tons per day in 2011. Kitchen waste is a kind of municipal wastes rich in organic matters, which is considerable feedstock for bioenergy process.
In this study, kitchen waste and napiergrass are applied as feedstocks of two-phase anaerobic process. The anaerobic process not only recycles renewable enrgy in form of biohydrogen and biomethane, but also the organic wastes can be stabilized and reutilized. Kitchen waste contains high concentration of COD (313.8 g/L) and TVS (152 g/L). The moisture is about 80 %. The main organic part are lipids, carbohydrates, and proteins. Besides, VFAs and ammonium are detected in the kitchen waste as well. The major part of VFAs is lactic acid (about 9,000 mg/L), and second one is acetic acid (about 2,000 mg/L). Napiergrass is the main pasture in Taiwan. The total carbohydrate is about 55 % in one gram of napiergrass. If the lignocellulosic structure can be hydrolyzed well by microorganisms, napiergrass is potential to be applied in bioenergy process.
In order to promote the utilization of complex substrate, two-phase anaerobic fermentation process was applied in this study. In the acid phase, three CSTRs were operated to hydrolyze and acidify the original substrate, and hydrogen produced will be collected and recycled. In the methane phase, an egg-shaped digester treated the fermentative effluent of acid phase.Methane production was collected and organic matter was stabilized.
The HRT of acid phase were 8 days, and the VLR were 10, 15 and 20 g COD/L-day, respectively. After operating 344 days, the conversion of carbohydrate were higher than 90 %, the removal of VSS were about 30, and the conversion of cellulose were 20 %. Hydrogen production rate were 0.9, 1.2 and 1.0 L H2/L-day, and hydrogen percentage was 45 %. The HRT of methane phase was 30 days, and the VLR was 3.5 g COD/L-day. The conversion of COD and VSS were 80 % and 70 %, respectively. It is worth mentioning that the digester gave high performance of degrading cellulose and lipis. The conversion rate of lipid and cellulose were both 90 %. The average methane production rate was 1.0 L CH4/L-day, and the methane percentage was 70 %.

摘要 I
Abstract III
誌謝 V
目錄 IX
表目錄 XI
圖目錄 XIII
第一章 前言 1
第二章 文獻回顧 3
2-1. 全球能源使用趨勢與潔淨再生能源之發展現況 3
2-2. 台灣廚餘回收與再利用之現況 7
2-3. 狼尾草作為能源作物之潛力與優勢 11
2-4. 厭氧生物醱酵程序發展生質能源 13
2-4-1. 厭氧有機物消化程序 13
2-4-2. 兩相式厭氧產氫產甲烷程序 14
2-4-3. 澱粉之結構特性與水解機制 16
2-4-4. 纖維素生質物之結構特性與水解機制 20
2-4-5. 蛋白質之厭氧水解與醱酵機制 24
2-4-6. 脂質厭氧水解與代謝機制 26
2-4-7. 厭氧產氫代謝機制 34
2-4-8. 微生物利用乳酸及乙酸共降解之產氫研究 37
2-4-9. 厭氧產甲烷代謝機制 39
2-5. 分子生物技術應用於厭氧醱酵微生物族群之探討 41
2-6. 厭氧醱酵程序中蛋形消化槽之設計與實際運用 46
第三章 研究方法與材料 51
3-1. I-CSTR高溫水解酸化反應器與蛋型消化槽 51
3-2. 水質與氣體成分分析項目與儀器 55
3-3. 生化甲烷潛能試驗 58
3-4. 掃描式電子顯微鏡 Scanning Electron Microscope (SEM) 61
3-5. 分子生物檢測技術 62
第四章 結果與討論 69
4-1. 台灣廚餘與狼尾草之特性分析 69
4-1-1. 台南市廚餘之特性分析 69
4-1-2. 狼尾草之特性分析 75
4-2. 厭氧醱酵微生物族群之特性分析 77
4-3. 高溫水解酸化槽與厭氧蛋形消化槽之操作與試程功能探討 82
4-3-1. 高溫水解酸化產氫槽之操作策略 83
4-3-2. 高溫水解酸化產氫槽之功能表現評估 85
4-3-3. 高溫蛋形厭氧消化槽之操作策略 111
4-3-4. 高溫蛋形厭氧消化槽之功能表現評估 113
4-4. 厭氧醱酵之微生物反應動力與基質轉化表現之探討 128
4-5. 厭氧醱酵微生物族群結構之探討 136
4-5-1. 以掃描式電子顯微鏡 (SEM) 觀察兩相式程序中菌相型態 136
4-5-2. 16S rRNA基因選殖實驗(clone library) 141
4-5-3. 分子生物技術T-RFLP探討厭氧醱酵菌群之族群變化 150
第五章 結論與建議 157
5-1. 結論 157
5-2. 建議 159
第六章 參考文獻 160

Angelidaki, I., Ahring, B.K. 1992. Effects of Free Long-Chain Fatty-Acids on Thermophilic Anaerobic-Digestion. Applied Microbiology and Biotechnology, 37(6), 808-812.
Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A. 2002. The IWA Anaerobic Digestion Model No 1 (ADM1). Water Science and Technology, 45(10), 65-73.
Beccari, M., Majone, M., Torrisi, L. 1998. Two-reactor system with partial phase separation for anaerobic treatment of olive oil mill effluents. Water Science and Technology, 38(4-5), 53-60.
Bertoldo, C., Antranikian, G. 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol, 6(2), 151-60.
Briones, A., Raskin, L. 2003. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Current Opinion in Biotechnology, 14(3), 270-276.
Cann, I.K., Stroot, P.G., Mackie, K.R., White, B.A., Mackie, R.I. 2001. Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol, 51(Pt 2), 293-302.
Canovas-Diaz, M., Sanchez-Roig, M., Iborra, J. 1991. Myristic and oleic acid degradation by an acclimated anaerobic consortia: synergistic behavior. in: Biomass for Energy, Industry and Environment. 6th E. C. Conference, Elseviers Applied Science. London, pp. 580-584.
Capros, P., Mantzos, L., Tasios, N., Vita, D., Kouvaritakis, N. 2010. EU energy treands to 2030 European, EU.
Dabrock, B., Bahl, H., Gottschalk, G. 1992. Parameters Affecting Solvent Production by Clostridium pasteurianum. Appl Environ Microbiol, 58(4), 1233-9.
Das, D., Khanna, N., Veziroglu, T.N. 2008. Recent Developments in Biological Hydrogen Production Processes. Chemical Industry & Chemical Engineering Quarterly, 14(2), 57-+.
Das, D., Veziroglu, T.N. 2001. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1), 13-28.
Demirel, B., Yenigun, O. 2002. Two-phase anaerobic digestion processes: a review. Journal of Chemical Technology and Biotechnology, 77(7), 743-755.
Devillard, E., McIntosh, F.M., Duncan, S.H., Wallace, R.J. 2007. Metabolism of linoleic acid by human gut bacteria: Different routes for biosynthesis of conjugated linoleic acid. Journal of Bacteriology, 189(6), 2566-2570.
Dichtl, N. 1997. Thermophilic and Mesophilic (Two-Stage) Anaerobic Digestion. Water and Environment Journal, 11(2), 98-104.
Diez-Gonzalez F, JB, R., JB, H. 1995. The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lacate by Clostridium acetobutylicum strain P262. Arch Microbiol, 164, 36-42.
Duangmanee, T., Padmasiri, S.I., Simmons, J.J., Raskin, L., Sung, S. 2007. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments. Water Environment Research, 79(9), 975-983.
Erkel, C., Kemnitz, D., Kube, M., Ricke, P., Chin, K.J., Dedysh, S., Reinhardt, R., Conrad, R., Liesack, W. 2005. Retrieval of first genome data for rice cluster I methanogens by a combination of cultivation and molecular techniques. Fems Microbiology Ecology, 53(2), 187-204.
Erkel, C., Kube, M., Reinhardt, R., Liesack, W. 2006. Genome of Rice Cluster I archaea - the key methane producers in the rice rhizosphere. Science, 313(5785), 370-372.
Fan, Y.T., Zhang, Y.H., Zhang, S.F., Hou, H.W., Ren, B.Z. 2006. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology, 97(3), 500-505.
Fernandez, A., Huang, S.Y., Seston, S., Xing, J., Hickey, R., Criddle, C., Tiedje, J. 1999. How stable is stable? Function versus community composition. Applied and Environmental Microbiology, 65(8), 3697-3704.
Fey, A., Claus, P., Conrad, R. 2004. Temporalchange of 13C-isotopesignatures and methanogenicpathways in ricefieldsoilincubatedanoxically at differenttemperatures. Geochimica et Cosmochimica Acta, 68(2), 293-306.
Ghosh, S. 1981. Kinetics of Acid-Phase Fermentation in Anaerobic-Digestion. Biotechnology and Bioengineering, 301-313.
Hatamoto, M., Imachi, H., Fukayo, S., Ohashi, A., Harada, H. 2007. Syntrophomonas palmitatica sp. nov., an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge. Int J Syst Evol Microbiol, 57(Pt 9), 2137-42.
Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P. 2009. The future of anaerobic digestion and biogas utilization. Bioresource Technology, 100(22), 5478-5484.
Hori, T., Haruta, S., Ueno, Y., Ishii, M., Igarashi, Y. 2006. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Applied and Environmental Microbiology, 72(2), 1623-1630.
Hwu, C.S., Donlon, B., Lettinga, G. 1996. Comparative toxicity of long-chain fatty acid to anaerobic sludges from various origins. Water Science and Technology, 34(5-6), 351-358.
IPCC. 2001. Climate Change. Cambridge University Press, United Kingdoms.
Kashket, E.R., Cao, Z.Y. 1995. Clostridial Strain Degeneration. Fems Microbiology Reviews, 17(3), 307-315.
Kato, S., Haruta, S., Cui, Z.J., Ishii, M., Igarashi, Y. 2005. Stable coexistence of five bacterial strains as a cellulose-degrading community. Applied and Environmental Microbiology, 71(11), 7099-7106.
Kim, S.H., Han, S.K., Shin, H.S. 2004. Two-phase anaerobic treatment system for fat-containing wastewater. Journal of Chemical Technology and Biotechnology, 79(1), 63-71.
Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O.P., Leer, R., Tarchini, R., Peters, S.A., Sandbrink, H.M., Fiers, M.W.E.J., Stiekema, W., Lankhorst, R.M.K., Bron, P.A., Hoffer, S.M., Groot, M.N.N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W.M., Siezen, R.J. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1990-1995.
Komatsu, T., Hanaki, K., Matsuo, T. 1991. Prevention of Lipid Inhibition In Anaerobic Process by Introducing a Two-phase System. Water Sci Technol, 23, 1189-1200.
Kontturi, E., Tammelin, T., Osterberg, M. 2006. Cellulose-model films and the fundamental approach. Chemical Society Reviews, 35(12), 1287-1304.
Kotay, S.M., Das, D. 2008. Biohydrogen as a renewable energy resource - Prospects and potentials. International Journal of Hydrogen Energy, 33(1), 258-263.
Lee, Y.J., Miyahara, T., Noike, T. 2001. Effect of iron concentration on hydrogen fermentation. Bioresour Technol, 80(3), 227-31.
Liu, C.H., Huang, C.C., Wang, Y.W., Chang, J.S. 2012. Optimizing lipase production from isolated Burkholderia sp. Journal of the Taiwan Institute of Chemical Engineers.
Liu, I.C., Whang, L.M., Ren, W.J., Lin, P.Y. 2011. The effect of pH on the production of biohydrogen by clostridia: Thermodynamic and metabolic considerations. International Journal of Hydrogen Energy, 36(1), 439-449.
Liu, S.Y., Rainey, F.A., Morgan, H.W., Mayer, F., Wiegel, J. 1996. Thermoanaerobacterium aotearoense sp nov, a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. International Journal of Systematic Bacteriology, 46(2), 388-396.
Liu, Y.C., Whitman, W.B. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Incredible Anaerobes: From Physiology to Genomics to Fuels, 1125, 171-189.
Lu, Y.H., Conrad, R. 2005. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 309(5737), 1088-1090.
Lu, Y.H., Lueders, T., Friedrich, M.W., Conrad, R. 2005. Detecting active methanogenic populations on rice roots using stable isotope probing. Environmental Microbiology, 7(3), 326-336.
Lueders, T., Friedrich, M. 2000. Archaeal population dynamics during sequential reduction processes in rice field soil. Appl Environ Microbiol, 66(7), 2732-42.
Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S. 2002a. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev., 66(3), 506-577.
Lynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S. 2002b. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506-+.
Matsumoto, M., Nishimura, Y. 2007. Hydrogen production by fermentation using acetic acid and lactic acid. Journal of Bioscience and Bioengineering, 103(3), 236-241.
McCarty, P.L., Rittmann, B.E. 2000. Environmental Biotechnology.
McInerney, M.J. 1988. Anaerobic hydrolysis and fermentation of fats and proteins. in: Biology of anaerobic microorganisms, (Ed.) Z. A.J.B., Wiley. New York.
Metcalf, L., Eddy, H.P., Tchobanoglous, G. 1991. Wastewater engineering: treatment, disposal, reuse. McGraw-Hill New York.
Moon, C.D., Pacheco, D.M., Kelly, W.J., Leahy, S.C., Li, D., Kopecny, J., Attwood, G.T. 2008. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrateproducing ruminal bacterium. International Journal of Systematic and Evolutionary Microbiology, 58, 2041-2045.
Nagase, M., Matsuo, T. 1982. Interactions between amino acid degrading bacteria and methanogenic bacteria in anaerobic digestion. Biotechnology and Bioengineering, 24(10), 2227-2239.
Nakhla, G., Baghchehsaraee, B., Karamanev, D., Margaritis, A. 2009. Effect of extrinsic lactic acid on fermentative hydrogen production. International Journal of Hydrogen Energy, 34(6), 2573-2579.
Ng, T.K., Weimer, T.K., Zeikus, J.G. 1977. Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol, 114(1), 1-7.
O-Thong, S., Prasertsan, P., Intrasungkha, N., Dhamwichukom, S., Birkeland, N.K. 2007. Improvement of biohydrogen production and treatment etticiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzyme and Microbial Technology, 41(5), 583-590.
Owen, W.F., Stuckey, D.C., Healy Jr, J.B., Young, L.Y., McCarty, P.L. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research, 13(6), 485-492.
Peters, J.W. 1999. Structure and mechanism of iron-only hydrogenases. Curr Opin Struct Biol, 9(6), 670-6.
Pohland, F.G., Ghosh, S. 1971. Developments in anaerobic stablization of organic wastes - the two-phase concepts. Envir Letters, 1, 255-266.
Ramsay, I.R. 1997. Modelling and control of high-rate anaerobic wasteater treatment systems, University of Queensland. Brisbane.
Ren, N.Q., Xu, J.F., Gao, L.F., Xin, L., Qiu, J., Su, D.X. 2010. Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. International Journal of Hydrogen Energy, 35(7), 2742-2746.
Rittmann, B.E., McCarty, P.L. 2000. Environmental Biotechnology: Principles and Applications. McGraw-Hill Science/Engineering/Math.
Roy, F., Samain, E., Dubourguier, H.C., Albagnac, G. 1986. Synthrophomonas-Sapovorans Sp-Nov, a New Obligately Proton Reducing Anaerobe Oxidizing Saturated and Unsaturated Long-Chain Fatty-Acids. Archives of Microbiology, 145(2), 142-147.
Roy, R., Kluber, H., Conrad, R. 1997. Early initiation of methane production in anoxic rice soil despite the presence of oxidants FEMs Microbiol Ecol, 24, 311-320.
Sakai, S., Imachi, H., Sekiguchi, Y., Ohashi, A., Harada, H., Kamagata, Y. 2007. Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol, 73(13), 4326-31.
Schnurer, A., Zellner, G., Svensson, B.H. 1999. Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. Fems Microbiology Ecology, 29(3), 249-261.
Sims, R.E.H. 2004. Renewable energy: a response to climate change. Solar Energy, 76(1-3), 9-17.
Sizova, M.V., Izquierdo, J.A., Panikov, N.S., Lynd, L.R. 2011. Cellulose- and Xylan-Degrading Thermophilic Anaerobic Bacteria from Biocompost. Applied and Environmental Microbiology, 77(7), 2282-2291.
Sizova, M.V., Panikov, N.S., Tourova, T.P., Flanagan, P.W. 2003. Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. Fems Microbiology Ecology, 45(3), 301-315.
Sousa, D.Z., Smidt, H., Alves, M.M., Stams, A.J.M. 2009. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. Fems Microbiology Ecology, 68(3), 257-272.
Stams, A.J., Plugge, C.M. 2009. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol, 7(8), 568-77.
Stukenberg, J., Clark, J., Sandino, J., Naydo, W. 1992. Egg-Shaped Digesters: From Germany to the U. S.
Tanisho, S., Kuromoto, M., Kadokura, N. 1998. Effect of CO2 removal on hydrogen production by fermentation. International Journal of Hydrogen Energy, 23(7), 559-563.
Ueno, Y., Haruta, S., Ishii, M., Igarashi, Y. 2001a. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Applied Microbiology and Biotechnology, 57(4), 555-562.
Ueno, Y., Haruta, S., Ishii, M., Igarashi, Y. 2001b. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol, 57(4), 555-62.
Volpe, G., Keaney, J., Schlegel, P., Roser, S., Tyler, C., Carr, J., Nagel, J. 2004. LARGE EGG-SHAPED DIGESTERS ISSUES AND IMPROVEMENTS. Proceedings of the Water Environment Federation, 2004(10), 496-513.
Wallace, R.J., Chaudhary, L.C., McKain, N., McEwan, N.R., Richardson, A.J., Vercoe, P.E., Walker, N.D., Paillard, D. 2006. Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. Fems Microbiology Letters, 265(2), 195-201.
Weimer, P.J., Zeikus, J.G. 1977. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol, 33(2), 289-97.
Weng, C., Jeris, J. 1976. Biochemical mechanisms in methane fermentation of glutamic and oleic aicds. Water Research, 10, 9-18.
Werner, J.J., Knights, D., Garcia, M.L., Scalfone, N.B., Smith, S., Yarasheski, K., Cummings, T.A., Beers, A.R., Knight, R., Angenent, L.T. 2011. Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4158-4163.
Whang, L.M., Lin, C.A., Liu, I.C., Wu, C.W., Cheng, H.H. 2011. Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition. Bioresource Technology, 102(18), 8378-8383.
Wilkie, A. 2008. Biomethane from biomass, biowaste, and biofuels. in: Bioenergy, (Eds.) J.D. Wall, C.S. Harwood, A.L. Demain, ASM Press. Washiton DC, pp. 195-205.
Wu, X.L., Friedrich, M.W., Conrad, R. 2006. Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils. Environmental Microbiology, 8(3), 394-404.
Yao, H., Conrad, R. 1999. Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy. Soil Biology & Biochemistry, 31(3), 463-473.
YL, Y., Noike, T., Katsumata, K., Koubayashi, H. 1996. Performance analysis of the full-scale egg-shaped digester in treating sewage sludge of high concentration. Water Science and Technology, 34(3), 483-491.
王郁萱. 2008. 高溫廚餘厭氧氫醱酵程序控制與水解機制之研究. in: 環境工程學系, Vol. 碩士, 國立成功大學. 台南市.
成游貴. 2006. 狼尾草育種與多元化利用. 科學發展, 407, 24-29.
吳兆瑋. 2011. 利用乳酸與乙酸共基質醱酵產氫之研究. in: 環境工程學系, Vol. 碩士, 國立成功大學. 台南市.
李澤坤. 2008. 蔬菜廚餘厭氧氫醱酵程序及流體化床醱酵槽改良設計之研究. in: 環境工程學系, Vol. 碩士, 國立成功大學. 台南市.
林建勝. 2007. 以生質能源程序探討廚餘厭氧氫醱酵之研究. in: 環境工程學系碩博士班, Vol. 碩士, 國立成功大學. 台南市.
莊崇柏. 2009. 利用生質酒精發酵殘渣產氫程序之研究. in: 環境工程學系, Vol. 碩士, 國立成功大學. 台南市.
郭世強. 2006. 廚餘厭氧醱酵產氫程序之功能評估. in: 環境工程學系碩博士班, Vol. 碩士, 國立成功大學. 台南市.
陳怡傑. 2009. 以厭氧流體化床進行廚餘過篩液及狼尾草之氫醱酵程序研究. in: 環境工程學系, Vol. 碩士, 國立成功大學. 台南市.
陳柏匡. 2011. 以兩段式程序將有機廢棄物轉化成生質氫氣及生質甲烷之研究. in: 環境工程學系, Vol. 碩士, 國立成功大學. 台南市.
黃仁晞. 2001. 廚餘回收再利用 (二).
黃基森. 1998. 有機廢棄物堆肥化處理現況及政策. in: 第一屆廢棄物清理實務研討會.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top