跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 15:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宗翰
研究生(外文):Zong-HanLi
論文名稱:鐵渣泥製劑應用於類芬頓反應處理含氯苯環化合物污染土壤之研究
論文名稱(外文):Iron slag/sludge agent induced Fenton-like reactions for treating chlorinated benzene compounds contaminated soil
指導教授:張祖恩張祖恩引用關係
指導教授(外文):Juu-En Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:171
中文關鍵詞:中石化安順廠受戴奧辛污染土壤含鐵渣泥芬頓/類芬頓反應
外文關鍵詞:An-Shun plant of CPDCdioxins contaminated soiliron slag/sludgeFenton/Fenton-like reactions
相關次數:
  • 被引用被引用:2
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:1
中石化安順廠內土地受高濃度的汞、戴奧辛以及五氯酚等毒性物質污染,面積高達40公頃,是國際上相當受關注的場址。尤其戴奧辛類化合物歸屬於斯德哥爾摩公約公告之持久性有機污染物,不但毒性、持久性高且具有生物累積性,已有研究指出此類污染物透過食物鏈傳播,使安順廠週遭居民深受其害。芬頓/類芬頓法(Fenton∕Fenton-like reaction)是利用亞鐵離子或是鐵氧化物與過氧化氫反應,產生具強氧化力之氫氧自由基以破壞有機污染物的處理方式,有研究指出此法可用於破壞戴奧辛類化合物。此外,煉鋼製程副產物含鐵渣泥中含有高量之鐵元素或是含鐵之化合物,此特性使其具有作為類芬頓反應之鐵源的潛力。本研究利用芬頓與類芬頓反應處理受對氯酚(4-chlorophenol,4-CP)污染土壤及中石化安順廠之受戴奧辛污染土壤,並將煉鋼廠副產物含鐵渣泥再製為鐵渣泥製劑(iron slag/sludge agents,ISA),以其作為類芬頓反應之鐵源,期望能有效達到土壤中污染物之降解破壞,並擴展含鐵渣泥資源再利用之應用範圍。
研究結果顯示,以著磁含鐵渣泥製成之ISA含Fe量較高且酸中和能力較低,較適合應用在類芬頓反應。由4-CP污染土壤降解實驗證實ISA可作為類芬頓反應之鐵源,且芬頓與類芬頓反應皆可有效處理受4-CP污染之土壤。芬頓反應較佳之操作條件為pH等於3,硫酸亞鐵添加濃度9 mM,當土壤4-CP初始濃度為1500 mg/kg時,添加29.41 mM之H2O2可在反應時間30分鐘達100%之去除率。而類芬頓反應較佳之操作條件為pH等於3,ISA添加量100 g/kg,當土壤4-CP初始濃度為1500 mg/kg時,添加73.53 mM之H2O2,可在反應時間30分鐘時達100%之去除率。此外,透過氯離子以及FT-IR之分析可知,芬頓/類芬頓反應具有斷氯鍵以及破苯環的作用。
中石化安順廠土壤經篩分後進行戴奧辛含量測定可知,戴奧辛總含量與毒性當量的排序為粒徑小於0.062 mm>0.25~2 mm>0.062~0.125 mm>0.125~0.25 mm,而其中戴奧辛化合物以OCDD為主,其次為OCDF、1,2,3,4,6,7,8-HpCDD以及1,2,3,4,6,7,8-HpCDF。此外,將各粒徑土壤固相總有機碳值與各粒徑土壤戴奧辛含量進行線性迴歸後可得R2值為0.709,表示土壤有機碳含量會影響土壤與戴奧辛化合物結合的能力。而透過芬頓與類芬頓反應可有效降低土壤戴奧辛含量,芬頓反應較佳之操作條件為pH等於3,硫酸亞鐵溶液添加濃度6 mM,H2O2添加濃度15%,在反應時間24小時,戴奧辛污染物總量去除率可達63%,毒性當量可降低為初始毒性當量的33%。類芬頓反應較佳之操作條件則為pH等於3,ISA添加量100 g/kg,H2O2添加濃度10%,反應時間24小時,此時戴奧辛污染物總量去除率可達68%,毒性當量可降低為初始毒性當量的32%。綜上可知,鐵渣泥製劑可應用於含氯苯環化合物污染土壤之處理。
An-Shun plant of China Petrochemical Development Corporation (CPDC) has been given much attention globally because of its highly contaminated soil by dioxins, mercury, and pentachlorophenol, and the contaminated area was estimated about 40 hectares. This study mainly focused on the decomposition of dioxins due to their high toxicity, persistence, and bioaccumulation. Besides, some studies indicated that dioxins can pass through the food chain causing hazard to health. It has been proved that dioxins can be decomposed efficiently by hydroxyl radicals generated from Fenton and Fenton-like reactions, which are driven by mixing ferrous ions or iron oxides with hydrogen peroxide (H2O2). On the other hand, iron slags/sludges are by-products of steel-making processes, so that they contain large amounts of iron or iron oxides, possessing the potential as iron sources of Fenton-like reactions. In this study, Fenton and Fenton-like reactions were used to treat soil contaminated by 4-chlorophenol (4-CP) and dioxins. Besides, iron slag/sludge agents (ISA) produced from iron slag/sludges were used in Fenton-like reactions to achieve the goal of destruction of organic pollutants in soil from An-Shun plant.
From the results, ISA produced from magnetic iron slag/sludges was suitable for the Fenton-like reactions because of their high iron content and low acid neutralization capacity. The results of the degradation of 4-CP contaminating soil suggest that ISA are feasible iron sources for Fenton-like reactions, and both Fenton/Fenton-like reactions are suitable for treating 4-CP contaminating soil. With [4-CP] = 1500 mg/kg, the optimal conditions for Fenton reactions were pH = 3, [ferrous sulfate] = 9 mM, and [H2O2] = 29.41 mM. Furthermore, an 100% removal efficiency was achieved in 30 min. For Fenton-like reactions, the optimal conditions were pH = 3, [ISA] = 100 g/kg, and [H2O2] = 73.53 mM, and an 100% removal efficiency was also achieved in 30 min. The analysis of fourier-transform infrared spectrometer (FT-IR) and the concentration of chlorine ions showed that the chlorine bonds and aromatic ring can be decomposed by Fenton/Fenton-like reactions.
The concentration of dioxins (Cdioxins) was the highest for the soil from An-Shun plant with particle size less than 0.062 mm, and lower for 0.25~2 mm, then 0.062~0.125 mm, and the lowest for 0.125~0.25 mm. The main compounds of dioxins were OCDD, OCDF, 1,2,3,4,6,7,8-HpCDD and 1,2,3,4,6,7,8-HpCDF. In addition, the R2 value between total organic carbon (TOC) content and Cdioxins of soil is 0.709, meaning the binding capability of soil and dioxins is affected by TOC content. The optimal conditions for treating dioxins contaminating soil with Fenton reaction were pH = 3, [ferrous sulfate] = 6 mM, and [H2O2] = 15%, and a 63% removal efficiency is achieved in 24 hours. For Fenton-like reaction, the optimal conditions were pH = 3, [ISA] = 100 g/kg, and [H2O2] = 10%, and a 68% removal efficiency was achieved in 24 hours.
中文摘要 I
英文摘要 III
誌 謝 V
目 錄 VI
表目錄 IX
圖目錄 XI
第一章 前 言 1
1-1研究動機與目的 1
1-2研究內容 2
第二章 文獻回顧 4
2-1持久性有機污染物之概述 4
2-1-1持久性有機污染物之基本特性 4
2-1-2戴奧辛之基本特性及污染案例介紹 7
2-1-3戴奧辛污染之整治方法 18
2-2化學氧化法 22
2-2-1化學氧化技術之簡介 22
2-2-2芬頓化學氧化法的原理及應用 27
2-2-3類芬頓化學氧化法的原理及應用 31
2-2-4影響芬頓/類芬頓反應之因素 35
2-3含鐵渣泥之特性與應用於類芬頓反應 42
2-3-1含鐵渣泥之產出 42
2-3-2含鐵渣泥之物化特性 47
2-3-3含鐵渣泥再利用現況與限制 51
2-3-4含鐵渣泥應用於類芬頓反應處理有機污染物 54
2-4小結 55
第三章 研究材料、設備與方法 56
3-1研究架構與流程 56
3-2研究材料與設備 59
3-2-1鐵渣泥製劑及受戴奧辛污染土壤前處理 59
3-2-2實驗試藥與儀器設備 59
3-3研究與分析方法 61
3-3-1受對氯酚污染土壤配製 61
3-3-2受對氯酚污染及受戴奧辛污染土壤降解實驗 61
3-3-3分析方法 62
第四章 結果與討論 69
4-1含鐵渣泥與鐵渣泥製劑之特性 69
4-1-1物理特性 69
4-1-2化學特性 72
4-1-3小結 78
4-2芬頓/類芬頓反應處理受對氯酚污染土壤 79
4-2-1未受污染土壤之基本特性 79
4-2-2芬頓反應處理受對氯酚污染土壤 85
4-2-3鐵渣泥製劑應用於類芬頓反應處理受對氯酚污染土壤 95
4-2-4小結 107
4-3鐵渣泥製劑應用於類芬頓反應處理受戴奧辛污染土壤 108
4-3-1受污染土壤之特性及戴奧辛濃度分布 108
4-3-2應用芬頓反應處理受戴奧辛污染土壤 128
4-3-3鐵渣泥製劑應用於類芬頓反應處理受戴奧辛污染土壤 141
4-3-4小結 155
第五章 結論與建議 157
5-1結論 157
5-2建議 159
參考文獻 160
Bardakci, B. (2007). FTIR-ATR spectroscopic characterization of monochlorophenols and effects of symmetry on vibrational frequencies. Journal of Arts and Sciences, 3(7), 13-19.

Burbano, A. A., Dionysiou, D. D., Suidan, M. T., & Richardson, T. L. (2005). Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Research, 39(1), 107-118.

Chen, P. H., & Watts, R. J. (2000). Determination of Rates of Hydroxyl Radical Generation in mineral-Catalyzed Fenton-like Oxidation. Journal of the Chinese Institute of Environmental Engineering, 10(3), 201-208.

Chiou, C. S., Chang, C. F., Chang, C. T., Shie, J. L., & Chen, Y. H. (2006). Mineralization of Reactive Black 5 in aqueous solution by basic oxygen furnace slag in the presence of hydrogen peroxide. Chemosphere, 62(5), 788-795.

Chiou, C. S., Chen, Y. H., Chang, C. Y., Shie, J. L., Liu, C. C., & Chang, C. T. (2006). Photochemical Oxidation of Polyethylene Glycol in Aqueous Solution by UV/H2O2 with Steel Waste. Journal of the Chinese Institute of Chemical Engineers, 37(4), 321-328.

Chou, S., & Huang, C. (1999). Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere, 38(12), 2719-2731.

Cullity, B. D. & Stock, S. R. (2001). Elements of X-Ray Diffraction. Upper Saddle: Prentice Hall.

Czaplicka, M. & Kaczmarczyk, B. (2006). Infrared study of chlorophenols and products of their photodegradation. Talanta, 70(5), 940-949.

Delgado, A. L., Martin de Vidales, J. L., Vila, E., & López, F. A. (1998). Synthesis of mixed ferrite with spinel-type structure from a stainless steelmaking solid waste. Journal of Alloys and Compounds, 281(2), 312-317.

Ghaly, M. Y., Ha¨rtel, G., Mayer, R., & Haseneder, R. (2000). Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. Waste Management, 21(1), 41-47.

Hsueh, C. H., Huang, Y. H., Wang, C. C., & Chen, C. Y. (2006). Photoassisted fenton degradation of nonbiodegradable azo-dye (Reactive Black 5) over a novel supported iron oxide catalyst at neutral pH. Journal of Molecular Catalysis A: Chemical, 245(1-2), 78-86.

Huang, G., Zhang, S., Xu, T., & Zhu, Y. (2008). Fluorination of ZnWO4 photocatalyst and influence on the degradation mechanism for 4-chlorophenol. Environmental Science & Technology, 42(22), 8516-8521.

Jiang, C., Pang, S., Ouyang, F., Ma, J., & Jiang, J. (2010). A new insight into Fenton and Fenton-like processes for water treatment. Journal of Hazardous Materials, 174(1), 813-817.

Kakarla, K. C., & Watts, R. J. (1997). Depth of Fenton-Like Oxidation in Remediation of Surface Soil. Journal of Environmental Engineering, 123(1), 11-17.

Kang, Y. W. & Hwang, K. Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 34(10), 2786-2790.

Kao, C. M. & Wu, M. J. (2000). Enhanced TCDD degradation by Fenton’s reagent preoxidation. Journal of Hazardous Materials, 74(3), 197-211.

Kavitha, V. & Palanivelu, K. (2003). Degradation of 2-chlorophenol by fenton and photo-fenton processes—A comparative study. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 38(7), 1215-1231.

Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55(9), 1235-1243.

Khan, M. A. & Watts, R. J. (1996). Mineral-catalyzed peroxidation of tetrachlorethylene. Water, Air, and Soil Pollution, 88(3-4), 247-260.

King, D. W., Lounsbury, H. A., & Millero, F. J. (1995). Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environmental Science & Technology, 29(3), 818-824.

Kong, S. H., Watts, R. J., & Choi, J. H. (1998). Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere, 37(8), 1473-1482.

Kwon, B. G., Lee, D. S., Kang, N., & Yoon, J. (1999). Characteristics of p-chlorophenol oxidation by Fenton's reagent. Water Research, 33(9), 2110-2118.

Lee, J. M., Kim, J. H., Chang, Y. Y., & Chang, Y. S. (2009). Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins. Journal of Hazardous Materials, 163(1), 222-230.

Lu, M. C. (2000). Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite. Chemosphere, 40(2), 125-130.

Lu, M. C., Chang, Y. F., Chen, I. M., & Huang, Y. Y. (2005). Effect of chloride ions on the oxidation of aniline by Fenton’s reagent. Journal of Environmental Management, 75(2), 177-182.

Lucas, M. S., & Peres, J. A. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 73(3), 236-244.

Lücking, F., Köser, H., Jank, M., & Ritter, A. (1998). Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Research, 32(9), 2607-2614.

Matta, R., Hanna, K., & Chiron, S. (2007). Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Science of The Total Environment, 385(1-3), 242-251.

Matta, R., Hanna, K., Kone, T., & Chiron, S. (2008). Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH. Chemical Engineering Journal, 144(3), 453-458.

Mckay, G. (2002). Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chemical Engineering Journal,86(3), 343-368.

Munoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2011). Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. Journal of Hazardous Materials, 190(1-3), 993-1000.

Muruganandham, M. & Swaminathan, M. (2004). Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology. Dyes and Pigments, 63(3), 315-321.

Nagano, S., Tamon, H., Adzumi, T., Nakagawa, K., & Suzuki, T. (2000). Activated carbon from municipal waste. Carbon, 38(6), 915-920.

Pignatell, J. J. & Huang, L. Q. (1993). Degradation of polychlorinated dibenzo-p-dioxin and dibenzofuran contaminants in 2,4,5-T by photoassisted iron-catalyzed hydrogen peroxide. Water Research, 27(12), 1731-1736.

Pignatello, J. J. (1992). Dark and Photoassisted Fe3+ Catalyzed of Chlorophenoxy Herbicides by Hydrogen. Environmental Science and Technology, 26(5), 944-951.

Poulopoulos, S. G., Nikolaki, M., Karampetsos, D., & Philippopoulos, C. J. (2008). Photochemical treatment of 2-chlorophenol aqueous solutions using ultraviolet radiation, hydrogen peroxide and photo-Fenton reaction. Journal of Hazardous Materials, 153(1-2), 582-587.

Quan, H. N., Teel, A. L., & Watts, R. J. (2003). Effect of contaminant hydrophobicity on hydrogen peroxide dosage requirements in the Fenton-like treatment of soils. Journal of Hazardous Materials, 102(2-3), 277-289.

Ravikuma, J. X., & Gurol, M. D. (1994). Chemical Oxidation of Chlorinated Organics by Hydrogen Peroxide in the Presence of Sand. Environmental Science & Technology, 28(3), 394-400.

Rivas, F. J., Beltrán, F. J., Frades, J., & Buxeda, P. (2001). Oxidation of p-hydroxybenzoic acid by Fenton's reagent. Water Research,35(2), 387-396.

Safe, S. & Hutzinger, O. (1984). Polychlorinated Biphenyls (PCBs) and Polybrominated Biphenyls (PBBs): biochemistry, toxicology, and mechanism of action. Critical Reviews in Toxicology, 13(4), 319-395.

Siedlecka, E. M., Więckowska, A., & Stepnowski, P. (2007). Influence of inorganic ions on MTBE degradation by Fenton's reagent. Journal of Hazardous Materials, 147(1-2), 497-502.

Sobrinho, P. J. N., Espinosa, D. C. R., & Tenorio, J. A. S. (2003). Characterisation of dusts and sludges generated during stainless steel production in Brazilian industries. Ironmaking & Steelmaking, 30(1), 11-17.

Sprah, G., & Harms, S. (1995). Influence of Some Groundwater and Surface Waters Constituents on the Degradation of 4-Chlorophenol by the Fenton Reaction. Chemosphere, 30(1), 9-20.

Stefanelli, P., Muccio, A. D., Ferrara, F., Barbini, D. A., Generali, T., Pelosi, P., Amendola, G., Vanni, F., Muccio, S. D., & Ausili, A. (2004). Estimation of intake of organochlorine pesticides and chlorobiphenyls through edible fishes from the Italian Adriatic Sea during 1997. Food Control, 15(1), 27-38.

Steinberg, S. M., Schmeltzer, J .S., & Kreamer, D. K. (1996). Sorption of benzene and trichloroethylene (TCE) on a desert soil: Effects of moisture and organic matter. Chemosphere, 33(5), 961-980.

Tang, W. Z. & Huang, C. P. (1995). The effect of chlorine position of chlorinated phenols on their dechlorination kinetics by Fenton's reagent. Waste Management, 15(8), 615-622.

Tang, W. Z., & Tassos, S. (1997). Oxidation kinetics and mechanisms of trihalomethanes by Fenton's reagent. Water Research, 31(5), 1117-1125.

Tay, J. H., Show, K. Y., Hong, S. Y., Chien, C. Y., & Lee, D. J. (2003). Thermal stabilization of iron-rich sludge for high strength aggregates. Journal of Materials in Civil Engineering, 15(6), 577-585.

Thiruvenkatachari, R., Kwon, T. O., & Moon, I. S. (2006). Degradation of Phthalic Acids and Benzoic Acid from Terephthalic Acid Wastewater by Advanced Oxidation Processes, 41(8), 1685-1697.

Tsai, T. T., & Kao, C. M. (2009). Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag. Journal of Hazardous Materials, 170(1), 466-472.

Tsai, T. T., Kao, C. M., & Wang, J. Y. (2011). Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation. Chemosphere, 83(5), 687-692.

USEPA. (2001). A citizen’s guide to chemical oxidation.

USEPA. (2001). A citizen’s guide to phytoremediation.

Valentine, R. L., & Wang, H. C. A. (1998). Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide. Journal of Environmental Engineering, 124(1), 31-38.

Ventura, A., Jacquet, G., Bermond, A., & Camel, V. (2002). Electrochemical generation of the Fenton’s reagent : application to atrazine degradation. Water Research, 36(1), 3517-3522.

Vollmuth, S. & Niessner, R. (1997). Degradation of polychlorinated dibenzo‐p‐dioxins and polychlorinated dibenzofurans during the UV/ozone treatment of pentachlorophenol‐containing water. Toxicological and Environmental Chemistry, 61(1-4), 27-41.

Watts, R. J., Foget, M. K., Kong, S. H., & Teel, A. L. (1999). Hydrogen peroxide decomposition in model subsurface systems. Journal of Hazardous Materials, 69(2), 229-243.

Watts, R. J., Haller, D. R., Jones, A. P., & Teel, A. L. (2000). A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton’s reactions. Journal of Hazardous Materials, 76(1), 73-89.

Watts, R. J., Smith, B. R., & Miller, G. C. (1999). Catalyzed hydrogen peroxide treatment of octachlorodibenzo-p-dioxin (OCDD) in surface soils. Chemosphere, 23(7), 949-955.

Watts, R. J., Udell, M. D., & Rauch, P. A. (1990). Treatment of pentachlorophenol-contaminated soils using Fenton's reagent. Hazardous Waste and Hazardous Materials, 7(4), 335-345.

Xu, X. R., Zhao, Z. Y., Li, X. Y., & Gu, J. D. (2004). Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent. Chemosphere, 55(1), 73-79.

Yan, Y. E., & Schwartz, F. W. (1999). Oxidative Degradation and Kinetics of Chlorinated Ethylenes by Potassium Permanganate. Journal of Contaminant Hydrology, 37(3-4), 343-365.

Yeh, C. K., Kao, Y. A., & Cheng, C. P. (2002). Oxidation of chlorophenols in soil at natural pH by catalyzed hydrogen peroxide: the effect of soil organic matter. Chemosphere, 46(1), 67-73.

中石化台鹼安順廠整治場址網站 http://cpdc.recyclesources.com/main.asp

中國鋼鐵公司,中鋼公司社會責任報告書,2010。

中國鋼鐵公司,爐石利用推廣手冊,四版,2003。

王金鐘,轉爐石作為基底層材料及其工程特性之研究,國立成功大學土木工程研究所,博士論文,2004。

王琳麒,戴奧辛,科學發展,第421期,第18~24頁,2008。

吳忠柱、傅君彥,灰渣吸附廢水中有機物可行性之研究,國立成功大學第七屆全校論文比賽作品集,1996。

宋文方,轉爐石吸收二氧化硫之研究,國立臺灣大學化學工程研究所,碩士論文,2004。

李昌樺、楊毓中、徐啟銘,重大化災回顧系列(一)-義大利薩維梭(Seveso)事件,中國化學工程學會會刊,2000。

李俊璋,台南市中石化安順廠附近居民流行病學及健康照護研究,行政院衛生署國民健康局研究計畫,2003。

周沅錞,燒結條件對鐵礦泥鐵氧磁體化之影響,國立成功大學環境工程學系,碩士論文,2006。

林育生,煉鋼爐石酸性土壤改良-爐石施用量推估與其對土壤化學特性的影響,國立屏東科技大學環境工程與科學系,碩士論文,2000。

林俊達,煉鋼爐渣蒸壓產製氣泡混凝土之特性研究,國立成功大學環境工程學系,碩士論文,2011。

林群勛,都市垃圾焚化廠周界環境中空氣、植物及土壤所含多氯戴奧辛/呋喃之調查研究,國立成功大學環境醫學研究所,碩士論文,2003。

翁明偉,脫硫渣與水淬爐石資源化於無水泥CLSM可行性之研究,國立高雄應用科技大學土木工程與防災科技研究所,碩士論文,2007。

袁家偉,使用轉爐石提升耐久性瀝青混凝土成效之研究,國立中央大學土木工程研究所,碩士論文,2007。

張火炎、李俊璋、桂椿雄、郭育良,多氯戴奧辛類化學物質之暴露與毒性,中華衛誌,第18卷,第13~27頁,1999。

張祿高、李銘杰,義大利薩維梭(Seveso)事故,電子文庫SHS環境科學專題,2011。

梁文盛,河溪生態工法參考手冊,行政院公共工程委員會委託研究,2005。

梁書豪,以Fenton-like氧化處理受燃料油污染之土壤,國立中山大學環境工程研究所,碩士論文,2006。

郭凡稜,大氣中戴奧辛/呋喃之氣固相及粒徑分佈,國立成功大學環境工程學系,碩士論文,2007。

郭文田、施博仁,脫硫渣應用於高壓混凝土磚,中國鑛冶工程學會第五十四屆,2009。

郭育宗,轉爐石去除河水中磷之探討,國立屏東科技大學環境工程與科學系,碩士論文,2009。

郭亮伶、李銘杰,橘劑-掬盡越南血淚,電子文庫SHS環境科學專題,2011。

陳仁炫、邱義豐,高爐渣及脫硫渣在強酸性土壤改良上之應用研究,酸性土壤之特性及其改良研討會,1993。

陳呈芳,戴奧辛污染土壤整治,水利土木科技資訊第33期,2006。

陳俊銘,受戴奧辛污染之環境介質經Fenton處理之研究,國立台南大學環境生態研究所,碩士論文,2008。

陳彥旻、林財富,持久性有機污染物之非焚化處理整治技術簡介,社團法人台灣土壤及地下水環境保護協會簡訊第41期,2011。

陳美伶,鎳鐵氧磁體及脫硫渣誘導H2O2處理反應黑染料之研究,國立成功大學環境工程學系,碩士論文,2011。

陳韋舜,Fenton-like反應中含氯乙烯類污染物與氫氧自由基反應係數之探討,國立屏東科技大學環境工程與科學系碩士班,碩士論文,2003。

游顥,環境污染整治政策形成之研究-以中石化(台鹼)安順廠為例,國立成功大學政治經濟研究所,碩士論文,2008。

黃偉慶,電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究,國立中央大學土木工程研究所,碩士論文,2000。

黃淑惠,利用強氧化劑過硫酸鈉配合UV光及加熱系統處理染料廢水,淡江大學水資源及環境工程學系碩士班,碩士論文,2009。

黃煥彰,失落的記憶~台鹼二部曲,看守台灣,第15卷,第二期,2003

黃毅峰,以新穎之Fenton/過硫酸鹽高級氧化程序降解染料Reactive Black B和雙酚A之研究,國立成功大學化學工程學系,博士論文,2009。

楊貫一,爐石資源化-中鋼公司爐石應用的過去與未來,技術與訓練,第17卷,第一期,第31~46頁,1992。

楊行宜,都市垃圾焚化廠排放戴奧辛/呋喃之特徵,國立成功大學環境工程學系,碩士論文,2004。

經濟部工業局,工安環保報導-持久性有機污染物斯德哥爾摩公約記事,第32卷,第10~13頁,2006。

經濟部工業局,電弧爐煉鋼還原渣資源化技術手冊,2001。

經濟部工業局,鋼鐵業廢棄物資源化案例彙編,1996。

劉世賢,鋼鐵廠固雜料產出及其資源化技術介紹,中工高雄會刊,第18卷,第四期,第56~63頁,2010。

鄭百乘,台灣地區周界環境中戴奧辛指紋圖譜和分佈之探討,國立清華大學化學系,博士論文,2003。

蕭宏杰,熱脫附處理技術應用於受有機物污染場址整治介紹,環保技術e報第三十七期,2006。

聯合國環境規劃署,清除世界持久性有機污染物:關於持久性有機污染物的斯德哥爾摩公約指南,2005。

鍾仁棋,台灣地區農業土壤戴奧辛之調查研究,環境檢驗所環境調查研究年報,2002。

蘇茂豐、陳立,電弧爐煉鋼爐碴之資源化現況及未來展望,工業污染防治,第93期,2005。

蘇鈺荃,電弧爐渣重金屬溶出特性及作為級配材料之可行性研究,國立成功大學環境工程學系,碩士論文,2011。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top