跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 22:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周鈺蓉
研究生(外文):Yu-RongJhou
論文名稱:脫硫渣製備tobermorite濾材及其應用於廢水重金屬回收之研究
論文名稱(外文):Synthesis of tobermorite filter with desulfurization slag and its application in heavy metals recovery from wastewater
指導教授:張祖恩張祖恩引用關係
指導教授(外文):Juu-En Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:170
中文關鍵詞:脫硫渣tobermorite濾材去除及回收重金屬濃縮比
外文關鍵詞:desulfurization slagtobermorite filterremoval and recovery of heavy metalsenrichment ratio
相關次數:
  • 被引用被引用:5
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著工業發展,大量污水排放,導致水中重金屬濃度增加,故若能有效過濾廢水中之重金屬將對用水安全有重要的貢獻。相關文獻指出tobermorite(Ca5Si6O18H2‧4H2O)晶相具有良好的離子交換能力,適合作為水處理之濾材。此外,煉鋼爐渣之脫硫渣(desulfurization slag,DS slag)富含鈣、矽及少量鋁元素,具有製備tobermorite濾材再利用於廢水處理之潛力。本研究利用二氧化矽(SiO2)、氧化鈣(CaO)控制原料配比,並添加不同反應溶液及含量,搭配高壓蒸氣反應程序,以純氧化物(pure oxides, PO)合成tobermorite濾材(PO-tobermorite)。參照PO-tobermorite之製備條件,以二氧化矽調整脫硫渣配比與控制反應條件,合成脫硫渣之tobermorite濾材(DS-tobermorite)。進一步探討上述tobermrotie濾材晶相消長情況與微觀結構,評估其去除及回收廢水重金屬之可行性。

歸納合成tobermorite濾材最適配比與反應溶液添加條件,PO-tobermorite於CaO/SiO2 (C/S)莫耳比為0.83、添加反應溶液為15 wt.%去離子水,及DS-tobermorite控制CaO/(SO2+Al2O3)(C/(S+A))莫耳比為0.83、添加反應溶液為15 wt.% 2 N NaOH(aq)下,可得較高之tobermorite晶相強度。經去除銅離子與鉛離子實驗結果得知,扣除沉澱機制後,DS-tobermorite較PO-tobermorite及未調質脫硫渣(DS)具有較高之去除效能,當批次試驗條件控制為pH=7、反應24 h及L/S=2000 L/kg時,可有效將15 mg/L銅溶液與20 mg/L鉛溶液處理達放流水標準。進一步以DS-tobermorite進行管柱連續流試驗,當達去除平衡時,銅及鉛之飽和去除量分別為217.03 mg/g與239.67 mg/g。另以硝酸置換回收被DS-tobermorite於pH=7之條件去除之銅及鉛,條件控制在1.5 N HNO3(aq)下反應3 h,液固比控制為100 L-HNO3(aq)/kg-DS-tobermorite,濃縮比(Enrichment ratio)高達11.49(銅)與15.32(鉛),而液固比為200 L- HNO3(aq)/kg-DS-tobermorite,可得到最佳回收率為67.9%(銅)與83.9%(鉛)。

實驗結果顯示,DS-tobermorite具有良好的離子交換特性,金屬離子易與DS-tobermorite層間中可交換性的陽離子進行反應,及從層間被硝酸(H+)置換出。雖然DS-tobermortie耐酸程度有限,但對於低濃度廢液具有高回收量,及於中性環境下擁有良好去除能力之優勢,配合適當酸液可有效回收水中重金屬,以達資源循環再利用的目標。

High concentrations of heavy metals in industrial wastewater before discharge was common in Taiwan. The purpose of this study was to improve the water security by filtering. Literatures have indicated that crystalline phase of tobermorite (Ca5Si6O18H2 • 4H2O) is suitable for wastewater filtration treatment due to its high cation exchange capacity. In addition, desulfurization (DS) slag was a by-product of steel-making processes, which contained large amounts of Ca and Si; therefore, it has the potential to synthesize tobermorite filters, and can be applied in heavy metals removal and recovery from wastewater. This study used quartz (SiO2) and lime (CaO) as raw materials with different amount of reaction solutions. Afterward, the suitable autoclave reaction procedure was applied in order to synthesize pure oxides (PO) tobermorite filter (PO-tobermorite). According to the synthetic conditions of PO-tobermorite, synthesized DS tobermorite filter (DS-tobermorite) was obtained by adjusting DS slag ratio of raw materials and reaction conditions. Furthermore, the crystalline phase and microscopic structures were observed to assess the capability of tobermorite filters to remove and recover heavy metals from wastewater.

The results showed that synthetic conditions of PO-tobermorite were controlled at 0.83 of CaO/SiO2 (C/S) ratio and 15 wt.% of deionized water. Moreover, the synthetic conditions of DS-tobermorite were controlled at 0.83 of CaO/ (SO2+Al2O3) (C/(S+A)) ratio and 15 wt.% of 2 N NaOH(aq). The synthesized DS-tobermorite filter had the best removal efficiency of Cu and Pb ions. The batch test showed that the DS-tobermorite filter could treat Cu (15 mg/L) and Pb (20 mg/L) wastewater to meet the Taiwan EPA’s effluent regulations of 3 mg/L for Cu and 1 mg/L for Pb, with the reaction pH = 7 and reaction time = 24 hours. Furthermore, using column-continuous flow test could get 217.03 mg/g (Cu) and 239.67 mg/g (Pb) of the balance removal capacity. Finally, the recovery experiments showed that under 1.5 N HNO3(aq), reaction time = 3 hours, and liquid to solid ratio = 100 L-HNO3(aq)/ kg-DS-tobermorite, the enrichment ratio of Cu and Pb could achieve at 11.49 and 15.32, respectively. However, with liquid to solid ratio = 200 L-HNO3(aq)/ kg-DS-tobermorite, the optimum recovery of Cu and Pb were 67.9% and 83.9%, respectively.

It is concluded that DS-tobermorite had good ion-exchange properties, good removal efficiency in neutral environment, and could recovery heavy metals with the appropriate amounts of acids. Therefore, DS-tobermorite can achieve the goal of resource recycling and reuse.

中文摘要I
英文摘要III
誌謝V
目錄VI
表目錄IX
圖目錄XI
第一章 前言1
1-1研究動機與目的1
1-2研究內容2
第二章 文獻回顧4
2-1重金屬廢水之處理現況4
2-1-1重金屬廢水之主要來源及危害4
2-1-2重金屬廢水之污染現況7
2-1-3水中重金屬去除之方法概述9
2-2合成tobermorite晶相應用於去除水中重金屬17
2-2-1去除水中重金屬之濾材簡介17
2-2-2 tobermorite之特性20
2-2-3 tobermorite晶相之生成22
2-2-4 tobermorite之性質與應用27
2-2-5含tobermorite晶相之離子交換型濾材之再生29
2-3脫硫渣之特性與處理現況30
2-3-1脫硫渣產出來源及特性30
2-3-2脫硫渣處理現況34
2-3-3脫硫渣應用於生成tobermorite之材料潛力探討37
2-4小結39
第三章 研究材料、設備與方法40
3-1研究架構與流程40
3-2研究材料與設備43
3-2-1實驗材料43
3-2-2實驗藥品與儀器設備43
3-3製備tobermorite濾材45
3-3-1參數設計及配比換算45
3-3-2濾材製備48
3-4 tobermorite濾材去除及回收水中銅離子及鉛離子49
3-4-1濾材去除水中重金屬離子49
3-4-2 DS-tobermorite濾材回收重金屬52
3-5分析方法53
3-5-1水分、灰分與燒失量分析53
3-5-2化學組成近似分析53
3-5-3 X光螢光分析54
3-5-4 X光粉末繞射分析55
3-5-5同步熱分析儀57
3-5-6掃描式電子顯微鏡/能量散佈儀58
第四章 結果與討論59
4-1脫硫渣之基本特性59
4-1-1物理特性59
4-1-2化學特性61
4-1-3小結65
4-2純氧化物與脫硫渣製備tobermorite濾材之最適反應條件探討66
4-2-1純氧化物製備濾材之條件探討66
4-2-2脫硫渣製備濾材之條件探討72
4-2-3純氧化物/脫硫渣晶相物種消長與鈣矽水化物之微觀結構特性80
4-2-4小結89
4-3濾材回收重金屬離子之條件探討90
4-3-1濾材去除銅離子之條件探討90
4-3-2濾材去除鉛離子之條件探討117
4-3-3 DS-tobermorite濾材回收銅及鉛之條件探討 142
4-3-4小結157
第五章 結論與建議159
5-1結論159
5-2建議161
參考文獻162

Alarcon-Ruiz, L., Platret, G., Massieu, E. and Ehrlacher, A. (2005). The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement and Concrete Research, 35(3), 609-613.
Al-Zboon, K., Al-Harahsheh, M. S. and Hani, F. B. (2011). Fly ash-based geopolymer for Pb removal from aqueous solution, Journal of Hazardous Materials, 188(1-3), 414-421.
Benavente, M., Moreno, L. and Martinez, J. (2011). The heavy metal adsorption characteristics on metakaolin-based geopolymer, Applied Clay Science, 56, 90-96.
Chen, J. P. and Lin, Y. S. (2007). Sol-gel-immobilized recombinant E. coli for biosorption of Cd (superscript 2+), Journal of the Chinese Institute of Chemical Engineers, 38(3-4), 235-243.
Cheng, T. W., Lee, M. L., Ko, M. S., Ueng, T. H. and Yang, S. F. (2012). The heavy metal adsorption characteristics on metakaolin-based geopolymer, Applied Clay Science, 56, 90-96.
Shan, C., Jing, Z., Pan, L., Zhou, L., Pan, X. and Lu, L. (2011). Hydrothermal solidification of municipal solid waste incineration fly ash, Research on Chemical Intermediates, 37, 551–565
Coleman, N. J. (2005), Synthesis, structure and ion exchange properties of 11Å tobermorites from newsprint recycling residue, Materials Research Bulletin, 40, 2000-2013.
Coleman, N. J. and Brassington, D. S. (2003). Synthesis of Al-substiruted 11Å tobermorite from newsprint recycling residue: a feasibility study, Materials Research Bulletin, 38(3), 485-497.
Coleman, N. J., Trice, C. J. and Nicholson, J. W. (2007). 11Å tobermorite from cement bypass dust and waste container glass: A feasibility study, International Journal of Mineral Processing, 93, 73-78.
Cullity, B. D. and Stock, S. P. (2001). Elements of X-Ray Diffraction. Upper Saddle: Prentice Hall.
Dimitrova, S. V. and Mehandgiev, D. R. (1998). Lead removal from aqueous solutions by granulated blast-furnace slag, Water Research, 32(11), 3289-3292.
Fan, B, Jin, Y., Zheng, X., Qiao, X. and Wang, X. (2012). New investigation of magnesium slag as desulfurizier, Advanced Materials Research, 356-360, 1853-1859.
Fournier, B., Bérubé, M. A. and Bergeron, G. (2006). Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali–aggregate reaction in concrete: (I) Alteration of alkali reactive aggregates in alkali solutions, Cement and Concrete Research, 36(6), 1176-1190.
Günay, E., Kara, M., Kavakli, B., Tayfur, S., Eren, K. and Yildirim, S. A. (2004). Steal slag and waste management, Key Engineering Materials, 264-268, 2481-2484.
Hawari, A. H. and Mulligan, C. N. (2007). Effect of the presence of lead on the biosorption of copper, cadmium and nickel by anaerobic biomass, Process Biochemistry, 42, 1546-1552.
Hu, J., Zhao, D. and Wang, X. (2011). Removal of Pb (II) and Cu (II) from aqueous solution using multiwalled carbon nanotubes/iron oxide magnetic composites, Water Science and Technology, 63(5), 917-923.
Huang, X., Jiang, D. and Tan, S. (2002). Novel hydrothermal synthesis method for tobermorite fibers and investigation on their thermal stability, Materials Research Bulletin, 37(11), 1885-1892.
Isu, N., Ishida, H. and Mitsuda, T. (1995). Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (I) tobermorite formation, Cement and Concrete Research, 25(2), 243-248.
Jauberthie, R., Temimi, M. and Laquerbe, M. (1996). Hydrotherma transformation of tobermorite gel to 10 Å tobermorite, Cement and concrete research, 26(9), 1335-1339.
Jing, Z., Ran, X., Jin, F. and Ishida, E. H. (2010). Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition, Waste Management, 30(8-9), 1521-1527.
Klimesch, D. S. and Ray, A. (1999). DTA-TGA evaluations of the CaO Al2O3-SiO2-H2O system treated hydrothermally, Thermochimica Acta, 334, 115-122.
Komarneni, S. and Roy, D. M. (1985), New tobermorite cation exchange, Journal of Materials science, 20(8), 2930-2936.
Kumar, G. P., Kumar, P. A., Chakraborty, S. and Ray, M. (2007). Uptake and desorption of copper ion using functionalized polymer coated silica gel in aqueous environment, Separation and Purification Technology, 57(1), 47-56.
Lide, D. R. 2007. CRC handbook of chemistry and physics., Taylor and Francis, BocaRaton, FL.
Liu, F., Chen, D., Ni, W. and Cao, Z. (2000). Effect of Al3+ on tobermorite crystallinity, Journal of University of Science and Technology Beijing, Mineral Metallurgy, Materials, 7(2), 79-83.
Liu, Q. and Liu, Y. (2003). Distribution of Pb (II) species in aqueous solutions, Journal of Colloid and Interface Science, 268(1), 266-269.
Mahler, W. (1980). Process for preparing amorphous particulate poly ( aluminosilicate ), US patent.
Mata, Y. N., Blázquez, M. L., Ballester, A., González, F. and Muñoz, J. A. (2009). Sugar-beet pulp pectin gels as biosorbent for heavy metals: Preparation and determination of biosorption and desorption characteristics, Chemical Engineering Journal, 150(2-3), 289-301.
Mostafa, N. Y. (2005). Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cement and concrete Research, 35(7), 1349-1357.
Nakahira, A., Naganuma, H., Kubo, T. and Yamasaki, Y. (2008). Synthesis of monolithic tobermorite from blast furnace slag and evaluation of its Pb removal ability, Journal of the Ceramic Society of Japan, 116(1351), 500-504
Nriagu, J. O. (1998). Clair Patterson and Robert Kehoe’s Paradigm of “Show Me the Data on Environmental Lead Poisoning, Environmental Research, 78, 71-78.
Ofomaja, A. E., Unuabonah, E. I. and Oladoja, N. A. (2010). Competitive modeling for the biosorptive removal of copper and lead ions from aqueous solution by Mansonia wood sawdust, Bioresource Technology, 101(11), 3844-3852.
Schneider, R. M., Cavalin, C. F., Barros, M. A. S. D. and Tavares, C. R. G. (2007). Adsorption of chromium ions in activated carbon, Chemical Engineering Journal, 132 (1-3), 355-362.
Sha, W., O’Neill, E.A. and Guo, Z. (1999). Differential scanning calorimetry study of ordinary Portland cement. Cement and Concrete Research, 29(9), 1487-1489.
Shan, C., Jing, Z., Pan, L., Zhou, L., Pan, X. and Lu, L. (2011). Hydrothermal solidification of municipal solid waste incineration fly ash, Research on Chemical Intermediates, 37(2-5), 551-565.
Shaw, S., Clark, S. M. and Henderson, C. M. B. (2000). Hydrothermal formation of the calcium silicate hydrates, tobermorite Ca5Si6O16(OH)2‧4H2O and xonotlite(Ca6Si6O17 (OH)2): an in situ synchrotron study, Chemical Geology, 167, 129-140.
Shim, J. W., Park, S. J., and Ryu, S. K. (2001). Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon, 39(11), 1635-1642.
Shrivastava, O. P. and Glasser, F. P. (1986). Ion-exchange properties of 11-Å tobermorite, Reactivity of Solids, 2, 261-268.
Shrivastava, O. P. and Shrivastava, R. (2000). Cation exchange applications of synthetic tobermorite for the immobilization and solidification of cesium and strontium in cement matrix, Bulletin of Materials Science, 23(6), 515-520.
Shrivastava, O. P. and Verma, T. (1995). Sr2+ Sorption and Leach Rate Studies on Synthetic Calcium Silicate Hydroxy Hydrate, Advanced Cement Based Materials, 2, 119-124.
Sridhar, K. (1985). Heavy metal removal from aqueous solutions by tobermorites and zeolites, Nuclear and Chemical Waste Management, 5, 247-250.
Stanton, T. E. (1942). Expansion of Concrete Through Reaction Between Cement and Aggregate, Transactions, American Society of Civil Engineers, 107, 54-126.
Tang, M. S., Han, S. F. and Zhen, S. H. (1983). A rapid method for identification of alkali reactivity of aggregate, Cement and Concrete Research, 13, 417-422.
Taylor, H. f. W. (1964). The Chemistry of Cements, Academic Press Inc, 169-195.
Taylor, H. f. w. (1997). Cement Chemistry, Thomas Telford, 114-141.
USEPA, (1987). USEPA Office of Drinking Water health advisories. Reviews of environmental contamination and toxicology, 106, 213-222.
Velde, B. (1992). Introduction to clay minerals, Chapman & Hall, London.
Wang, S., Li, L. and Zhu, Z. H. (2007). Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater, Journal of Hazardous Materials, 139(2), 254-259.
Wongkeo, W. and Chaipanich, A. (2010). Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottem ash and silica fume. Materials Science and Engineering A, 527(16), 3676-3684.
Youssef, H., Ibrahim, D., Komarneni, S. and Mackenzie, K. J. D. (2010). Synthesis of 11 Å Al-substituted tobermorite from trachyte rock by hydrothermal treatment, Ceramics International, 36(1), 203-209.
Zhang, S., Gong, K. and Lu, J. (2004). Novel modification method for inorganic geopolymer by using water soluble organic polymers, Materials Letters, 58, 1292-1296.
中國建築標準設計研究院,磚牆建築構造:燒結多孔磚與普通磚、蒸壓磚,一版,北京市,2007。
中國鋼鐵公司,企業責任報告書,2010。
中國鋼鐵公司,爐石利用推廣手冊,四版,2003。
丘惠生、王瑞禎、高健章,橋梁現地蒸汽養生技術推廣手冊,2000。
艾芮卡,以化學與生物絮凝法進行高含油量小球藻之收集,國立成功大學,化學工程學系,碩士論文,2011。
行政院經濟部工業局經濟統計處,網址:https://2k3dmz2.moea.gov.tw/Gwweb, 2012。
行政院環境保護署全國環境水質監測資訊網,網址:http://wq.epa.gov.tw/WQEPA/Code/SiteMap.aspx,2012。
何先聰,臺灣地區重金屬污染之河川底泥之化學可利用性-pH值及氧化還原電位的影響,行政院國家科學委員會,臺北市,2008。
吳一民,灰渣類廢棄物應用於廢水中有機物去除之研究,國立成功大學環境工程學系,碩士論文,1997。
吳忠柱、傅君彥,灰渣吸附廢水中有機物可行性之研究,國立成功大學第七屆全校論文比賽作品集,1996。
李安成、林榮顯、陳志維、林信余、蕭吉晉,吸附在廢水處理之應用(Ι)陽離子交換樹脂去除廢水中的鉛離子,工程科技與教育學刊,第2卷,第一期,第58~66頁,2005。
邱義豐、牟金錄,中鋼自產脫硫渣資源化研究,第二屆工業減廢技術與策略研討會,1993。
張自杰、何苗譯,工業廢水處理與回用技術,馮林環境保護基金會出版社,臺北市,2000。
張明峰,高爐石與脫硫渣之力學特性研究,國立成功大學土木工程系,1994。
張信義,煉鋼爐石去除水中砷及磷之研究,國立屏東科技大學環境工程與科學系,碩士論文,2003。
張祖恩、李德河,中鋼公司脫硫渣作為填地材料可行性研究,研究報告第一五八號,國立成功大學環境工程學系,1994。
張漢昌,廢水污染與防治,初版,新文京開發出版股份有限公司,台北縣,2005。
陳仁炫、邱義豐,高爐渣及脫硫渣在強酸性土壤改良上之應用研究,酸性土壤之特性及其改良研討會,1993。
陳聖偉,前氧化對混凝沉澱程序影響之研究,國立成功大學,環境工程學系,碩士論文,2009。
陳瑤湖,以煉鋼爐渣及脫硫渣改善養蝦池底泥可行性之研究,國立台灣海洋大學水產養殖系,鋼鐵工業爐渣資源化再利用實務研討會,2000。
傅彥培,煉鋼脫硫渣資源化之基礎研究,國立成功大學,資源工程學系,碩士論文,1995。
彭志英,固定化酶和固定化活細胞,食品酵素學,第七章,九州圖書文物有限公司,台北市,第261~308頁,2004。
黃兆龍,高爐熟料的性質及在混凝土工程上的應用,營建世界,第三十二期,第55~59頁,1984。
黃馨儀,廢水處理常用化學藥劑應用手冊,經濟部工業局,臺北市,2006。
楊永華,離子交換劑研究-3,矽膠基質銨鹽與鋅鹽單管柱離子層析法研究,行政院國家科學委員會,臺北市,2007。
趙中原,醫學常用數據手冊標準,人民衛生出版社,北京,2000。
蔡恩榮,Kish graphite回收與精製之研究,國立成功大學礦冶及材料科學研究所,碩士論文,1993。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top