跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/30 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳詣欣
研究生(外文):Yi-HsinChen
論文名稱:粒徑對煉鋼爐渣產製蒸壓氣泡混凝土特性之影響
論文名稱(外文):Effects of particle size on characteristics of autoclaved aerated concrete produced from steel-making slags
指導教授:張祖恩張祖恩引用關係
指導教授(外文):Juu-En Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:128
中文關鍵詞:粒徑煉鋼爐渣高壓蒸氣養護氣泡混凝土托伯莫萊土
外文關鍵詞:particle sizesteel-making slagsautoclaved curingaerated concretetobermorite
相關次數:
  • 被引用被引用:5
  • 點閱點閱:441
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
電弧爐還原渣(electric arc furnace slag,EAF slag)及轉爐石(basic oxygen furnace slag,BOF slag)皆含有鈣、矽等物質,具有作為高壓蒸氣養護氣泡混凝土(autoclaved aerated concrete,AAC)替代原料之潛力。但因上述二種渣類中含有未反應之游離氧化鎂(free MgO,f-MgO)與游離石灰(free CaO,f-CaO),此類物質與水反應後會造成爐渣體積膨脹。此外,大粒徑之爐渣反應接觸面積較少,導致f-MgO與f-CaO含量較多,使其再利用受到許多限制。若能透過蒸壓養護程序將爐渣中f-MgO及f-CaO與SiO2反應形成水化產物,除可解決爐渣膨脹問題外,亦可擴展煉鋼爐渣粒徑之應用範圍。本研究將粒徑小於0.063 mm、0.063~0.5 mm、0.5~2 mm、2~4 mm及細粒料級配之非著磁還原渣及轉爐石經調質作為AAC替代原料,藉由調控水固比(water to solids ratio,W/S),探討煉鋼爐渣粒徑與拌合水量對AAC製品密度及抗壓強度之影響,歸納原料最適製作條件。而粗粒徑煉鋼爐渣(〉 0.5 mm)則進行前處理程序,藉由粒徑縮減或水熱熟化程序,評析其應用於AAC製造之可行性。
研究結果顯示,經磁選分離之非著磁還原渣及轉爐石,各粒徑皆富含Ca、Si元素具有作為AAC替代原料之潛力。當W/S = 0.70 L/kg,利用〈 0.063 mm還原渣及轉爐石其AAC製品之密度及強度較0.063~0.5 mm製品為高。當替代比例超過5 wt.%,AAC製品抗壓強度隨替代比例增加而減少,當替代比例為20 wt.%,可符合AAC-4(4 MPa)標準。調降水固比可增加AAC製品之密度及抗壓強度並提高煉鋼爐渣替代量。當W/S = 0.60 L/kg,煉鋼爐渣替代比例可達30 wt.%,利用〈 0.063 mm還原渣與0.063~0.5 mm轉爐石其製品皆符合AAC-4標準,而利用〈 0.063 mm轉爐石其製品抗壓強度為8.45 MPa,可符合AAC-6密度與強度規範。降低水固比至0.55 L/kg,可提高〈 0.063 mm轉爐石替代量達40 wt.%,其製品可符合AAC-4標準。觀察其AAC製品晶相組成、熱重分析及水化物微觀結構,顯示原料粒徑對其製品晶相組成並無顯著差異,皆可形成托伯莫萊土(Ca5(OH)2Si6O16∙4H2O,tobermorite),對AAC製品抗壓強度有所貢獻。而粗粒徑(〉 0.5 mm)還原渣及轉爐石需進行粒徑縮減或水熱熟化程序。藉由粒徑縮減,可增加反應之比表面積,促使爐渣中f-MgO及f-CaO反應形成tobermorite,當替代比例為20 wt.%之AAC製品可符合AAC-4標準。而水熱熟化粗粒徑還原渣及轉爐石,分析不同熟化條件其晶相組成及熱重及熱流變化,以壓力8 atm熟化4小時為最適熟化條件,將熟化後還原渣及轉爐石再利用於AAC製備,可使爐渣粒徑應用範圍提高至4 mm,且製品皆可符合AAC-6標準。因此粗粒徑煉鋼爐渣透過粒徑縮減或水熱熟化程序,可提升還原渣及轉爐石應用於製作AAC之比例。

Electric arc furnace (EAF) slag and basic oxygen furnace (BOF) slag are by products of the iron and steel industry. These slags contain large amounts of Ca and Si, so that they have the potential to be used in the production of autoclaved aerated concrete (AAC). These slags contain free MgO (f-MgO) and free CaO (f-CaO), and they cause long-term volume expansion. In addition, slags with larger particle size have less contact area, thus causing them to possess a large amount of f-MgO and f-CaO. Therefore their usages are limited. On the other hand, autoclaved processing technology is capable of f-MgO and f-CaO reaction with SiO2 to form hydration products. Making it possible to solve slag problem and to expand the applicable range of the slags. This research used 〈0.063 mm, 0.063~0.5 mm, 0.5~2 mm, 2~4 mm, and fine aggregates of non-magnetic slags as raw materials to produce AAC, and determined the appropriate proportions of the raw materials and suitable water-to-solids ratio (W/S). Besides, 〉0.5 mm slags are pre-treated by crushing or hydrothermal treatment for the AAC production.
The results showed that the non-magnetic EAF and BOF slags contained large amounts of Ca and Si, which are suitable for AAC raw materials. With the W/S = 0.70 L/kg, the density and compressive strength of the AAC products of using 〈0.063 mm EAF and BOF slags were better than those of using 0.063~0.5 mm. When the replacement ratio was more than 5 wt.%, the density and compressive strength decreased with increasing replacement ratio. When the replacement ratio of slags was equal to 20 wt.%, the AAC products can meet the AAC-4 standards. On the other hand, controlling the W/S values can increase the replacement ratio of slags. With W/S = 0.60 L/kg and the replacement ratio of slags was equal to 30 wt.%, the AAC products of using 〈0.063 mm and 0.063~0.5 mm EAF slag meet the AAC-4 standards. The compressive strength of the AAC products of reusing 〈0.063 mm BOF slag was 8.45 MPa, which meets the AAC-6 standards. With the W/S = 0.55 L/kg, the replacement ratio of BOF slag increased to 40 wt.%, and the AAC products can meet the AAC-4 standards. Furthermore, it is found that the tobermorite (Ca5(OH)2Si6O16∙4H2O) in the AAC products, such as plate-like and lath-like tobermorite, can enhance the compressive strength. On the other hand, the reduction of particle size of 〉0.5mm EAF and BOF slags can increase specific surface area that benefit to the formation of tobermorite. Therefore, when the replacement ratio of slags was equal to 20 wt.%, the AAC products can meet AAC-4 standards. In addition, using the hydrothermal treatment for slags under an 8-atm saturated steam pressure for 4 h can improve the volume stability of slags. The cured slags were reused in AAC production, and the products can meet the AAC-6 standards. The particle size of slags larger than 4 mm should be reduced or treated by the hydrothermal treatment, so that the proportions of EAF and BOF slags in the application of AAC production can increase.

中文摘要 I
英文摘要 III
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XII
第一章 前言 1
1-1研究動機與目的 1
1-2研究內容 2
第二章 文獻回顧 4
2-1煉鋼爐渣產出製程及基本特性 4
2-1-1電弧爐還原渣產出及物化特性 4
2-1-2轉爐石產出及物化特性 8
2-2煉鋼爐渣應用及熟化技術 13
2-2-1煉鋼爐渣之再利用現況與問題點 13
2-2-2煉鋼爐渣之熟化技術 20
2-3輕質混凝土之發展現況及製造 23
2-3-1輕質混凝土發展與類型 23
2-3-2氣泡輕質混凝土之製造程序及膨化 26
2-3-3氣泡輕質混凝土之養護方式 28
2-4高壓蒸氣養護氣泡混凝土之材料特性 29
2-4-1高壓蒸氣養護程序 29
2-4-2托伯莫萊土特性與強度發展 31
2-4-3原料組成及粒徑對高壓蒸氣養護氣泡混凝土之影響 33
2-4-4高壓蒸氣養護氣泡混凝土之工程特性及應用 36
2-5 小結 38
第三章 研究材料、設備與方法 39
3-1研究架構與實驗流程 39
3-2研究材料與設備 41
3-2-1煉鋼爐渣前處理 41
3-2-2實驗試藥與儀器設備 42
3-3煉鋼爐渣調質與製備高壓蒸氣養護氣泡混凝土 43
3-3-1煉鋼爐渣調質最適配比 43
3-3-2漿體製備與高壓蒸氣養護程序 44
3-3-3分析方法 47
第四章 結果與討論 52
4-1煉鋼爐渣之基本特性 52
4-1-1物理特性 52
4-1-2化學特性 56
4-1-3晶相組成 59
4-1-4小結 61
4-2煉鋼爐渣調質產製高壓蒸氣養護氣泡混凝土 62
4-2-1電弧爐還原渣製造高壓蒸氣養護氣泡混凝土 62
4-2-2轉爐石製造高壓蒸氣養護氣泡混凝土 74
4-2-3製品熱重分析與水化物微觀結構 85
4-2-4小結 95
4-3粗粒徑煉鋼爐渣經前處理再利用於產製高壓蒸氣養護氣泡混凝土 97
4-3-1粒徑縮減對製品特性之影響 97
4-3-2熟化處理技術對製品特性之影響 103
4-3-3小結 119
第五章 結論與建議 120
5-1結論 120
5-2建議 122
參考文獻 123

Amin, M. S. & Hashem, F. S. (2011). Hydration characteristics of hydrothermal treated cement kiln dust-sludge-silica fume pastes. Construction and Building Materials, 25(4), 1870-1876.
Connan, H., Klimesch, D., Ray, A., & Thomas, P. (2006). Thermal characterisation of autoclaved cement made with alumina-silica rich industrial waste. Journal of Thermal Analysis and Calorimetry, 84(2), 521-525.
Connan, H., Ray, A., Thomas, P., & Guerbois, J.-P. (2007). Effect of autoclaving temperature on calcium silicate-based building products containing clay-brick waste. Journal of Thermal Analysis and Calorimetry, 88(1), 115-119.
Cullity, B. D. & Stock, S. R. (2001). Elements of X-Ray Diffraction. Upper Saddle: Prentice Hall.
Isu, N., Ishida, H., & Mitsuda, T. (1995). Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (I) tobermorite formation. Cement and Concrete Research, 25(2), 243-248.
Isu, N., Teramura, S., Ishida, H., & Mitsuda, T. (1995). Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (II) fracture toughness, strength and micropore. Cement and Concrete Research, 25(2), 249-254.
Jing, Z., Ishida, E. H., Jin, F., Hashida, T., & Yamasaki, N. (2006). Influence of quartz particle size on hydrothermal solidification of blast furnace slag. Industrial and Engineering Chemistry Research, 45(22), 7470-7474.
Jing, Z., Jin, F., Hashida, T., Yamasaki, N., & Ishida, E. H. (2008). Influence of additions of coal fly ash and quartz on hydrothermal solidification of blast furnace slag. Cement and Concrete Research, 38(7), 976-982.
Jing, Z., Jin, F., Hashida, T., Yamasaki, N., & Ishida, H. (2007). Hydrothermal solidification of blast furnace slag by formation of tobermorite. Journal of Materials Science, 42(19), 8236-8241.
Jing, Z., Matsuoka, N., Jin, F., Hashida, T., & Yamasaki, N. (2007). Municipal incineration bottom ash treatment using hydrothermal solidification. Waste Management, 27(2), 287-293.
Karakurt, C., Kurama, H., & Topçu, I. B. (2010). Utilization natural zeolite in aerated concrete production. Cement and Concrete Composites, 32(1), 1-8.
Klimesch, D. S., & Ray, A. (1999). DTA-TGA evaluations of the CaO-Al2O3-SiO2-H2O system treated hydrothermally. Thermochimica Acta, 334(1-2), 115-122.
Klimesch, D. S., Ray, A., & Sloane, B. (1996). Autoclaved cement-quartz pastes: the effects on chemical and physical properties when using ground quartz with different surface areas part І: quartz of wide particle size. Cement and Concrete Research, 26(9), 1399-1408.
Kurama, H., Topçu, I. B., & Karakurt, C. (2009). Properties of the autoclaved aerated concrete produced from coal bottom ash. Journal of Materials Processing Technology, 209(2), 767-773.
Mitsuda, T., Sasaki, K., & Ishida, H. (1992). Phase evolution during autoclaving process of aerated concrete. Journal of the American Ceramic Society, 75(7), 1858-1863.
Mostafa, N. Y. (2005). Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cement and Concrete Research, 35(7), 1349-1357.
Narayanan, N. & Ramamurthy, K. (2000). Microstructural investigations on aerated conctete. Cement and Concrete Research, 30(3), 457-464.
Pera, J., Coutaz, L., Ambroise, J., & Chababbet, M. (1997). Use of incinerator bottom ash in concrete. Cement and Concrete Research, 27(1), 1-5.
Short, A. & Kinniburgh, W. (1976). Lightweight concrete. Formerly Building Research Establishment, U.K.
Smith, M. R. & Collis, L. (1993). Aggregates: Sand, Gravel and Crushed Rock Aggregates for Construction Purposes. London: Geological Society.
Topçu, I. B. & Uygunoğlu, T. (2007). Properties of autoclaved lightweight aggregate concrete. Building and Environment, 42(12), 4108-4116.
Wittmann, F. H. (1992). Advances in aotuclaved aerated concrete. Proceedings of the 3rd RILEM International Symposium on Autoclaved Aerated Concrete.
Wongkeo, W. & Chaipanich, A. (2010). Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Materials Science and Engineering A, 527(16-17), 3676-3684.
Wongkeo, W., Thongsanitgarn, P., Pimraksa, K., & Chaipanich, A. (2012). Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Materials and Design, 35, 434-439.
Yang, J., Liu, W., Zhang, L., & Xiao, B. (2009). Preparation of load-bearing building materials form autoclaved phosphogypsum. Construction and Building Materials, 23(2), 687-693.
Yang, Q., Zhang, S., Huang, S., & He, Y. (2000). Effect of ground quartz sand on properties of high-strength concrete in the steam-autoclaved curing. Cement and Concrete Research, 30(12), 1993-1998.
Zhao, Q., Stark J., Freyburg E., & Zhou, M. (2012). Steam and autoclave treatments on structure characteristics of steel slag. Advanced Materials Research, 356-360, 1919-1927.
中國鋼鐵公司,中鋼企業社會責任報告書,2010。
中國鋼鐵公司,爐石利用推廣手冊,四版,2003。
中華鋪面工程學會,轉爐石應用於鋪面工程之推廣期末報告,桃園,2006。
王弟文,下水污泥焚化灰製造發泡輕質混凝土之研究,國立中央大學環境工程研究所,碩士論文,2001。
王金鐘,轉爐石作為基底層材料及其工程特性之研究,國立成功大學土木工程研究所,博士論文,2005。
王耀寬,轉爐石對多孔隙瀝青混凝土之影響,國立成功大學土木工程研究所,碩士論文,2008。
江奇成,電弧爐煉鋼還原渣與鑄件廢料摻用於混凝土再生材之模式研究,國立台灣科技大學營建工程學系,博士論文,2005。
吳怡虹,重金屬對無機廢棄物燒製富貝萊土水泥之影響,國立成功大學環境工程學系,碩士論文,2009。
林俊達,煉鋼爐渣蒸壓產製氣泡混凝土之特性研究,國立成功大學環境工程學系,碩士論文,2011。
林庭亦,電弧爐還原渣再生應用於高性能混凝土性質之研究,國立台灣科技大學營建工程學系,碩士論文,2003。
袁家偉,使用轉爐石提升耐久性瀝青混凝土成效之研究,國立中央大學土木工程研究所,碩士論文,2007。
高健章,輕質混凝土在國內發展之研究,內政部建築研究所籌備處專題研究計畫成果報告,1993。
陳宗裕,燒結參數對無機廢棄物合成水泥熟料晶相之影響,國立成功大學環境工程學系,碩士論文,2008。
傅國柱,還原渣取代部份水泥之研究,國立中央大學土木工程研究所,碩士論文,2002。
黃大衛,轉爐石取代傳統粒料對瀝青混凝土VMA性質影響之研究,國立中央大學土木工程研究所,碩士論文,2008。
黃兆龍,高爐熟料的性質及在混凝土工程上的應用,營建世界,第三十二期,第55~59頁,1984。
黃兆龍,混凝土性質與行為,詹氏書局,三版,台北市,2005。
楊貫一,爐石資源化-中鋼公司爐石應用的過去與未來,技術與訓練,第17卷,第一期,第31~46頁,1992。
經濟部工業局,電弧爐煉鋼還原渣資源化技術手冊,2001。
經濟部工業局,鋼鐵業廢棄物資源化案例彙編,1996。
劉國忠,煉鋼爐渣之資源化技術與未來推展方向,環保月刊,第四期十月號,第117~118頁,2001。
鄭欽仁,下水污泥灰發泡混凝土之輕質化與隔熱特性研究,國立中央大學環境工程研究所,碩士論文,2002。
顏聰,輕質骨材混凝土之力學性質,輕質骨材混凝土會刊,創刊號,第27~41頁,2004。
蘇茂豐、陳立,電弧爐煉鋼爐碴之資源化現況及未來展望,工業污染防治,第九十三期,第27~51頁,2005。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top