跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/29 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林鉅凱
研究生(外文):Chi-KaiLin
論文名稱:鄰苯二甲酸酯類分子模板研發與空氣採樣測試
論文名稱(外文):Development of Molecular Imprinting Polymers ofPhthalate Esters and Air Sampling Tests
指導教授:林達昌
指導教授(外文):Ta-Chang Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:105
中文關鍵詞:分子模板MISPE鄰苯二甲酸酯類空氣採樣GC/MS
外文關鍵詞:MIPsMISPEphthalate estersair samplingGC/MS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
鄰苯二甲酸酯類(PAEs)主要用來增加塑膠製品的可塑性讓塑膠製品可以製作成各種形狀。PAEs在製造過程可能釋出在環境中,且添加在塑膠製品時與聚合物並非以化學鍵鍵結,容易藉由擴散方式進到環境中。由於塑膠工廠排放或是廢棄的塑膠製品,造成河岸的水體遭受污染;除了環境水體中即使鄰苯二甲酸酯類揮發性不高,仍可在室內空氣中採集到,其中又以塑膠工廠濃度為最高。
本研究使用鄰苯二甲酸二甲酯(DMP)與鄰苯二甲酸二丁酯(DBP)當目標分子合成分子模板,在模板合成過程中目標分子、官能基單體、交聯劑、起使劑各選擇四種不同配比,及合成未添加目標分子之模板當作控制組進行比較。在分子模板測試中包括吸附容量測試、吸附因子(IF)、掃描式顯微鏡觀察(SEM)、MISPE回收率及選擇性測試等,經過以上材料測試後選擇一組效果最佳的分子模板進行空氣採樣測試,並與美國OSHA 104公告方法進行比較。
實驗結果顯示在DMP分子模板中以MA-1拓因因子最佳為1.43
,MA-4的吸附容量最佳,吸附容量為48.22 μg/g;在DBP模板中僅MB-1製備成功其吸附量為12.45 μg/g。選擇性結果顯示MA-4雖選擇性不佳但對於各種鄰苯二甲酸酯類皆有較佳的回收率,以環保署列為第一類毒性化學物質之DMP, DEP, DBP, BBP, DEHP, DNOP回收率分別為74.1%, 115.4%, 117.7%, 133.8%, 99.4%, 105.6%。在鄰苯二甲酸酯類空氣採樣測試結果顯示,MISPE(MA-4)採集效果並未優於OVS-Tenax,僅在低分子量鄰苯二甲酸酯類DEP, DIBP, DBP採集效率較高,分別為75.1%, 93.6%, 86%。

Phthalates esters (PAEs) are mainly used as plasticizers to enhance the flexibility of polyvinylchloride (PVC), which helps with shaping PVC products more easily. Since plasticizers are not chemically bound onto the PVC structure or other matrices, they leach out or evaporate into the atmosphere during production. Rivers can be contaminated due to discharge by the plastic factories or plastic wastes. Despite the low volatility of PAEs, they are still found in indoor air, especially inside most plastic factories.
In this study, dibutylphthalate (DBP) and dimethyl phalate (DMP) were selected as the templates of molecular imprinting polymers (MIPs). In material characteristics trials, four different ratios of template, functional monomer (methacrylic acid, MAA), cross-linker (ethylene glycol dimethacrylate, EDMA) and the initiator (2,2-azobis(2-isobutyronitrile), AIBN) of MIPs, as well as the corresponding molecular imprinting polymers without template (NIPs) were synthesized. MIPs were tested for their capacity, imprinting factor (IF), SEM characteristics, recovery and selectivity of MISPE. Finally, the MIP with the best recovery among 14 PAEs was chosen for the gasification and sampling test of phthalate ester. In addition, the sampling efficiency were compared with that from the OSHA Method 104.
The experimental results suggest that MA-1 had the best imprinting factor(1.43), MA-4 had the best capacity of 48.22 μg of DMP, and the capacity of MB-1 was 12.45 μg/g . The selectivity tests showed that MA-4 could adsorb each phthalate esters, and the recovery of first class of hazardous chemicals in Taiwan EPA were 74.1%, 115.4%, 117.7%, 133.8%, 99.4%, 105.6% (DMP, DEP, DBP, BBP, DEHP, DNOP). Sampling of phthalate esters in a chamber with MISPE (MA-4) revealed that the sampling efficiency of MISPE was not higher than that of OVS-Tenax. However, it did give good efficiency on DEP, DIBP, DBP (75.1%, 93.6%, 86%).

中文摘要 ................................................. I
英文摘要 ............................................... III
誌謝 ..................................................... V
總目錄 ................................................. VII
表目錄 .................................................. XI
圖目錄 ................................................ XIII
第一章 前言 ...............................................1
1-1 研究動機 ..............................................1
1-2 研究目的 ............................................. 2
第二章 文獻回顧 .......................................... 3
2-1 微量分析之概念與應用 ................................. 3
2-1-1 環境樣品微量分析技術 ............................... 3
2-1-2 樣品前處理方法 ..................................... 3
2-2 固相萃取概念與應用 ................................... 6
2-2-1 固相萃取原理 ....................................... 6
2-2-2 固相萃取應用於微量物質.............................. 7
2-3 分子模板之概念與應用 ................................. 9
2-3-1 分子模板起源 ....................................... 9
2-3-2 分子模板概念 ....................................... 9
2-3-3 分子模板合成方法 .................................. 11
2-3-4 分子模板應用與傳統萃取法比較....................... 14
2-4 鄰苯二甲酸酯類之介紹 ................................ 17
2-4-1 鄰苯二甲酸酯類特性 ................................ 17
2-4-2 環境中流佈 ........................................ 22
2-4-3 鄰苯二甲酸酯類之暴露途徑與毒性..................... 24
2-4-4 國內外現行法規 .................................... 27
2-4-5 空氣中鄰苯二甲酸酯類之採樣及分析方法 .............. 32
第三章 實驗與方法 ....................................... 35
3-1 實驗架構與流程 ...................................... 35
3-2 實驗藥品與器材 ...................................... 37
3-3 分子模板製備 ........................................ 39
3-3-1 製備與脫模流程 .................................... 39
3-3-2 模板之配比 ........................................ 40
3-4 分子模板材料測試 .................................... 43
3-4-1 吸附容量測試 ...................................... 43
3-4-2 最大吸附容量測試 .................................. 43
3-4-3 洩漏測試 .......................................... 43
3-4-4 掃描式電子顯微鏡(SEM)觀察 ......................... 44
3-5 分子模板固相萃取管柱(MISPE)測試 ..................... 45
3-5-1 Loading 與Wash 溶劑測試 ........................... 46
3-5-2 回收率測試 ........................................ 46
3-5-3 選擇性測試 ........................................ 47
3-5-4 重複性測試 ........................................ 48
3-6 模擬鄰苯二甲酸酯類空氣樣品採集 ...................... 49
3-6-1 採樣設計與規劃 .................................... 49
3-6-2 分子模板、OVS-Tenax 採樣與分析 .................... 51
3-7 GC/MS 分析條件與設定 ................................ 52
第四章 數據分析品質保證與控制 ........................... 54
4-1 空白試驗 ............................................ 54
4-1-1 溶劑空白試驗 ...................................... 54
4-1-2 程序空白試驗 ...................................... 54
4-2 分析程序之 QA/QC .................................... 55
4-2-1 方法偵測極限 ...................................... 55
4-2-2 準確度與精密度建立 ................................ 56
4-2-3 滯留時間測試 ...................................... 57
4-2-4 標準品檢量線建立 .................................. 57
第五章 結果與討論 ....................................... 61
5-1 分子模板材料測試結果 ................................ 61
5-1-1 分子模板吸附容量與拓印因子 ........................ 62
5-1-2 分子模板(MA-4)最大吸附容量測試 .................... 65
5-1-3 洩漏測試 .......................................... 66
5-1-4 電子顯微鏡(SEM)觀察結果 ........................... 67
5-2 MISPE 測試結果 ...................................... 73
5-2-1 Loading 與wash 溶劑測試 ........................... 73
5-2-2 DMP、DBP 回收率 ................................... 75
5-2-3 選擇性測試結果 .................................... 78
5-2-4 重複使用性 ........................................ 84
5-2-5 小結 .............................................. 86
5-3 模擬空氣樣品採集效率 ................................ 88
5-3-1 OVS-Tenax 採集效率 ................................ 88
5-3-2 分子模板採集效率 .................................. 90
5-3-3 分子模板於實際空氣採集可行性 ...................... 92
第六章 結論與建議 ....................................... 96
6-1 結論................................................. 96
6-2 建議 ................................................ 98
參考文獻 ................................................ 99


Agarwal, D. K., R. R. Maronpot, et al. (1985). Adverse effects of butyl benzyl phthalate on the reproductive and hematopoietic systems of male rats. Toxicology 35(3): 189-206.

Allender, C. J., C. Richardson, et al. (2000). Pharmaceutical applications for molecularly imprinted polymers. International Journal of Pharmaceutics 195(1–2): 39-43.

An, F. Q., B. J. Gao, et al. (2007). Studies on preparation of ion-imprinted polyethyleneimine on silica gel particles and binding properties for metal ions. Acta Polymerica Sinica(4): 366-373.

Andersson, L. I. (2000). Molecular imprinting: developments and applications in the analytical chemistry field. Journal of Chromatography B: Biomedical Sciences and Applications 745(1):3-13.

ATSDR , A. f. T. S. a. D. R. (1995). Toxicological Profile for diethyl phthalate, Public Health Service, U.S. Department of Health and Human Services, Atlanta.

ATSDR , A. f. T. S. a. D. R. (1997). Toxicological Profile for di-n-octyl phthalate phthalate, Public Health Service, U.S. Department of Health and Human Services, Atlanta.

ATSDR , A. f. T. S. a. D. R. (2001). Toxicological Profile for di-n-butyl phthalate phthalate, Public Health Service, U.S. Department of Health and Human Services, Atlanta.

ATSDR , A. f. T. S. a. D. R. (2002). Toxicological Profile for di-(2-ethylhexyl) phthalate, Public Health Service, U.S. Department of Health and Human Services, Atlanta.

Bergh, C., R. Torgrip, et al. (2011). Organophosphate and phthalate esters in air and settled dust - a multi-location indoor study. Indoor Air 21(1):67-76.

Clark, K. (2003). Assessment of Critical Exposure Pathways Series Anthropogenic Compounds. C. Staples, Springer Berlin / Heidelberg.3Q: 227-262.

Cousins, I. and D. Mackay (2000). Correlating the physical–chemical properties of phthalate esters using the `three solubility' approach.Chemosphere 41(9): 1389-1399.

Crocker, J. F. S., S. H. Safe, et al. (1988). Effects of chronic phthalate exposure on the kidney. Journal of Toxicology and Environmental Health 23(4): 433-444.

David, R. M., M. R. Moore, et al. (1999). Chronic peroxisome proliferation and hepatomegaly associated with the hepatocellular tumorigenesis of di(2-ethylhexyl)phthalate and the effects of recovery. Toxicological sciences : an official journal of the Society of Toxicology 50(2):195-205.

Dean, J. R. (2003). Methods for environmental trace analysis. Analytical Techniques in the Sciences (AnTS).

EPA, U. S. E. P. A. (1986). Method 0010: Modified Method 5 Sampling Train. In Online Test Methods for Evaluating Solid Waste Physical/Chemical Hethods (SW- 8469)

EPA, U. S. E. P. A. (1996). Method 3542: Extraction of Semivolatile Analytes Collected Using Method 0010 (Modified Method 5 Sampling train). In Online Test Methods for Evaluating Solid Waste Physical/Chemical Hethods (SW- 846)

Fatoki, O. S. and A. Noma (2002). Solid Phase Extraction Method forSelective Determination of Phthalate Esters in the Aquatic Environment. Water, Air, & Soil Pollution 140(1): 85-98.

Fischer, E. (1894). Einfluss der Configuration auf die Wirkung der Enzyme.Berichte der deutschen chemischen Gesellschaft 27(3): 2985-2993.

Fischer, J., K. Ventura, et al. (1993). Method for determination of plasticizers in industrial emissions. Chromatographia 37(1): 47-50.

Furtmann, K. (1994). Phthalates in surface water — a method for routine trace level analysis. Fresenius' Journal of Analytical Chemistry 348(4):
291-296.

Ge, R.-S., G.-R. Chen, et al. (2007). Phthalate ester toxicity in Leydig cells:Developmental timing and dosage considerations. Reproductive
Toxicology 23(3): 366-373.

He, J., R. H. Lv, et al. (2010). Selective solid-phase extraction of dibutyl phthalate from soybean milk using molecular imprinted polymers.Analytica Chimica Acta 661(2): 215-221.

He, J. F., Q. H. Zhu, et al. (2007). Investigation of imprinting parameters and their recognition nature for quinine-molecularly imprinted polymers. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy
67(5): 1297-1305.

Howdeshell, K. L., C. V. Rider, et al. (2008). Mechanisms of action of phthalate esters, individually and in combination, to induce abnormal reproductive development in male laboratory rats. Environmental Research 108(2): 168-176.

Kang, Y. F., W. P. Duan, et al. (2012). Molecularly imprinted polymers of allyl-beta-cyclodextrin and methacrylic acid for the solid-phase extraction of phthalate. Carbohydr Polym 88(2): 459-464.

Kluwe, W. M., E. E. McConnell, et al. Carcinogenicity testing of phthalate esters and related compounds by the National Toxicology Program and the National Cancer Institute.

Komiyama, M., T. Takeuchi, et al. (2004). Front Matter. Molecular Imprinting, Wiley-VCH Verlag GmbH & Co. KGaA: i-xii.

Lai, J.-P., M.-L. Yang, et al. (2007). Molecularly imprinted microspheres and nanospheres for di(2-ethylhexyl)phthalate prepared by precipitation
polymerization. Analytical and Bioanalytical Chemistry 389(2):405-412.

Lin, Z.-P., M. G. Ikonomou, et al. (2003). Determination of Phthalate Ester Congeners and Mixtures by LC/ESI-MS in Sediments and Biota of an Urbanized Marine Inlet. Environmental Science & Technology 37(10):2100-2108.

Long, J. L. A., W. A. House, et al. (1998). Micro-organic compounds associated with sediments in the Humber rivers. Science of The Total Environment 210–211(0): 229-253.

Nielsen, J., B. ÅKesson, et al. (1985). Phthalate Ester Exposure—Air Levels and Health of Workers Processing Polyvinylchloride. American Industrial Hygiene Association Journal 46(11): 643-647.

NIOSH, U. S. I. f. O. S. a. H. (1994). Dibutyl phthalate and Di(2-Ethylhexyl) phthalate: Method 5020.2. In Dibutyl phthalate and Di(2-Ethylhexyl) phthalate: Method 5020.2, NIOSH manual of analytical methods(NMAM).

Nollet, L. M. L. (2006). Chromatographic analysis of the environment. Boca Raton, CRC/Taylor & Franciss.
OSHA, U. S. O. S. a. H. A. (1994). Method 104. In: OHSA Sampling and Analytical Methods. Organic Methods Evaluation Branch, OSHA Salt Lake Technical Center, Salt Lake City.

Otake, T., J. Yoshinaga, et al. (2001). Analysis of Organic Esters of Plasticizer in Indoor Air by GC−MS and GC−FPD. Environmental Science & Technology 35(15): 3099-3102.

Rudel, R. A., J. G. Brody, et al. (2001). Identification of Selected Hormonally Active Agents and Animal Mammary Carcinogens in Commercial and Residential Air and Dust Samples. Journal of the Air & Waste Management Association 51(4): 499-513.

Rudel, R. A., D. E. Camann, et al. (2003). Phthalates, Alkylphenols, Pesticides, Polybrominated Diphenyl Ethers, and OtherEndocrine-Disrupting Compounds in Indoor Air and Dust.Environmental Science & Technology 37(20): 4543-4553.

Ruminski, J. K., Dejewska, B.,and Wojtanis, J. (1995). Environmental Research, Part I, Investigation on dioctyl phthalate (DEHP) pollution in soil and surface water near Wabrzezno (Torub district), Poland. j.environ. studies 4: 65-69.

Saito, I., A. Onuki, et al. (2004). Indoor air pollution by alkylphenols in tokyo. Indoor Air 14(5): 325-332.

Shaikh, H., N. Memon, et al. (2012). Preparation and characterization of molecularly imprinted polymer for di(2-ethylhexyl) phthalate: Application to sample clean-up prior to gas chromatographic determination. Journal of Chromatography A 1247(0): 125-133.

Sheldon, L., A. Clayton, et al. (1992). Pteam: Monitoring of phthalates and PAHs in indoor and outdoor air samples in Riverside, California. Volume 2. Final report. Other Information: See also PB--93-166957:Medium: X; Size: Pages: (241 p).

Simpson, N. J. k. and M. J. M. Well (2000). Introduction to Solid-Phase Extraction.Stales, C. A., D. R. Peterson, et al. (1997). The environmental fate of phthalate esters: A literature review. Chemosphere 35(4): 667-749.

Svenson, J. and I. A. Nicholls (2001). On the thermal and chemical stability of molecularly imprinted polymers. Analytica Chimica Acta 435(1):19-24.

Teil, M. J., M. Blanchard, et al. (2006). Atmospheric fate of phthalate esters in an urban area (Paris-France). Sci Total Environ 354(2-3): 212-223.

Thuren, A. and P. Larsson (1990). Phthalate esters in the Swedish atmosphere. Environmental Science & Technology 24(4): 554-559.

Vlatakis, G., L. I. Andersson, et al. (1993). Drug assay using antibody mimics made by molecular imprinting. Nature 361(6413): 645-647.

Wang, S. L., P. Wang, et al. (2009). Determination of particulate and gaseous phthalic acid esters in ambient air by large-volume injection-gas chromatography-mass spectrometry. Journal of Environmental Monitoring 11(4): 882-886.

Wang, X. K., W. L. Guo, et al. (2002). Analysis of phthalate esters in air, soil and plants in plastic film greenhouse. Chinese Chemical Letters 13(6): 557-560.

Ward, J. M., J. M. Peters, et al. (1998). Receptor and nonreceptor-mediated organ-specific toxicity of di(2-ethylhexyl)phthalate (DEHP) in peroxisome proliferator-activated receptor alpha-null mice.Toxicologic pathology 26(2): 240-246.

Wulff, G., R. Grobe-Einsler, et al. (1977). Enzyme-analogue built polymers,5. On the specificity distribution of chiral cavities prepared in synthetic polymers. Die Makromolekulare Chemie 178(10): 2817-2825.

Yu, C. and K. Mosbach (2000). Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers. Journal of Chromatography A 888(1-2): 63-72.

Zhang, T., F. Liu, et al. (2001). Influence of intramolecular hydrogen bond of templates on molecular recognition of molecularly imprinted polymers. Anal Chim Acta 450(1–2): 53-61.

Zhu, Q. Z., K. Haupt, et al. (2002). Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides. Analytica Chimica Acta 468(2): 217-227.

王思惠 (2007). 應用分子模版從不同大豆溶液中選擇性萃取異黃酮素.國立成功大學化學工程學系碩士論文.

王韻筑 (2010). 利用固相微萃取技術被動式採集空氣中之鄰苯二甲酸酯類. 臺灣大學環境衛生研究所學位論文.

行政院環保署環境檢驗所 (2004). 固相萃取方法. 中華民國93 年6 月21 日環署檢字第0930043773 號公告.

何緯倫 (2011). 運用分子模板於香菸中半揮發有機物檢測方法研發. 國立成功大學環境工程系博士論文.

汪禧年、李俊璋 (98). PVC 塑膠粒製造勞工之鄰苯二甲酸酯類暴露評估研究. 勞工安全衛生研究報告.

陳弘毅 (2011). 運用分子模板於三聚氰胺分析之方法研發. 國立成功大學環境工程學系碩士論文.

黃筱媛 (2011). 分子模板應用於鄰苯二甲酸酯類分析技術之研發. 國立成功大學環境工程學系碩士論文.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊