跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳煜希
研究生(外文):Yee-SheeTan
論文名稱:食品加工業廢棄物及廢水之能源回收設計系統建構 – 以小型豆腐工廠為例
論文名稱(外文):Design system for energy recovery from food processing waste and wastewater – Case study on local tofu factory
指導教授:福島康裕
指導教授(外文):Yasuhiro Fukushima
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:134
中文關鍵詞:食品加工業廢棄物及廢水生質能源成本預算溫室氣體排放
外文關鍵詞:food processing waste and wastewaterbiological energy recoverybudget allowancegreenhouse gas emission
相關次數:
  • 被引用被引用:2
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:103
  • 收藏至我的研究室書目清單書目收藏:0
小型食品加工業所排放之廢棄物及廢水被視為是具有開發潛能之替代能源。透過回收利用食品加工業廢棄物和廢水,將可拓展工廠能源取得方式,及減少工廠排放物對公共處理設施的依賴;且相較於傳統之處理方式,更可降低對環境的負荷。因此,若能提高食品加工業廢棄物及廢水之回收利用,將可大幅度地減少對環境及公共衛生的危害。然而,因各工廠有不同的廢棄物及廢水特徵、工廠操作條件、初始投資成本及可使用之回收技術等條件限制,使得食品加工業廢棄物及廢水利用之發展受到阻礙。
本研究評估在不同的成本預算下,藉由整合食品加工業廢棄物及廢水處理和其能源回收之最佳系統模擬分析,得溫室氣體排放及初始投資成本之減量效果。
本研究以一個座落於台南市住宅區之小型豆腐工廠為例,示範說明所建構之設計和計算架構。此架構可提供一個特定成本預算下,將COD處理至最小化之程序。此程序可滿足其現地條件,如廢棄物及廢水之排放量及特徵、工廠之電量及熱能需求和相關之法規。以每天生產4,900 kg 豆腐的工廠為例,於最低投資成本並達到其廢水排放標準時,此程序可達到54 kg CO2-eq. 之溫室氣體排放減量。其中,此程序包含設置生產H2之暗發酵槽及生產CH4之厭氧消化槽,用以將COD為14,793 mg/L 之原廢水處理至100 mg/L。而其生成之氣體,則可用以生產20 kWh 的電量及12 kWh 的熱能,供給工廠22.5%的電量及0.8%的熱能需求。此外,在台灣排放之豆渣通常被利用作為豬飼料或堆肥。若能將豆渣加入此程序,將可回收更多的能源(可分別提高至33.3%的電量及1.4%的熱能需求)。本研究之計算結果亦顯示,若將豆渣投入系統,其溫室氣體排放可減少1,348 kg CO2-eq.(已考量堆肥所排放之溫室氣體)。若無此能源回收程序,在較為嚴格之法規實施時,就會需要運用高級氧化處理其所排放之廢水。研究結果顯示,於不同的法規和政策,其成本回收時間也將會有顯著的不同。
本研究所提出之設計程序、最佳化及其計算架構,亦可用於其他小型工廠上以設計類似之處理程序,同時也可促進食品加工業廢棄物及廢水之再回收利用。然而,若要更深入的探討成本花費和其回收時間,將需要更多的相關研究,如反應槽的操作時間、調勻槽的採用等,探討在一定時間內能源供應的能力。

Food processing waste and wastewater from small factories are the potential energy resource distributed widely. Utilizing the food processing waste and wastewater can reduce pressures on environment and public health in developing regions by achieving 1) better access to energy for factories, 2) less reliance on construction of infrastructure, and 3) reduction of environmental loads associated with conventional food processing waste and wastewater treatment. However, its wide implementation is hindered because those small factories have its specific food processing waste and wastewater characteristics, constraints, and allowance for initial investment, while available technologies are diverse.
Here, reductions in life cycle greenhouse gas emission and cost potentially achieved by an integrated food processing waste and wastewater treatment and energy recovery system optimized over various budget allowances are assessed.
A case study on a small tofu factory located in residential area of Tainan city is conducted to demonstrate the developed design and evaluation schemes that propose a process which minimizes chemical oxygen demand (COD) with the given budget allowance. The process would meet the local conditions such as amount and characteristics of waste and wastewater generated, heat and electricity demand in the factory and regulations. For the tofu factory producing 4,900kg of tofu per day, a reduction of 54 kg CO2-eq. per day is potentially achieved with the minimum investment for meeting the local wastewater standard. A combination of dark fermentation (H2 production) and anaerobic digestion (CH4 production) was chosen, reducing COD from 14,793 to 100 mg/L. The product gas is used for cogeneration of 20 kWh electricity (22.5%) and 12 kWh heat (0.8%) used within the factory. Dreg is used as pig feed or compost in Taiwan. By introducing dreg as additional substrate, more energy is exploited (33.3 and 1.4% of total demand for electricity and heat, respectively). Our calculation shows that GHG emission reduction is also enhanced (1,348 kg CO2-eq. day-1) with this option, considering the deficit in the compost that is produced otherwise. Without energy recovery, treatment by advanced oxidization process would be needed if a tighter regulation were introduced. It is shown in this study that the payback time can be significantly different under varied regulations and promotion strategies.
The synthesis, optimization and evaluation schemes used in this study serves as a framework for designing similar systems tailored to other small factories thereby expected to promote food processing waste and wastewater utilization. To discuss the cost and payback time more in depth, further study on a more specific design (scheduling of reactor operations, introduction of storage tanks, etc.) is needed to consider shortcomings in capability to provide as much energy as needed at any time.
Abstract......i
中文摘要......iii
Acknowledgement......v
Table of contents......vii
Figure index......ix
Table index......xiii
Chapter 1 Introduction......1
1.1 Preface......1
1.2 Motivation......3
1.3 Objective......6
Chapter 2 Literature Review......9
2.1 Biological energy recovery process......9
2.1.1 Dark fermentation......9
2.1.2 Photo fermentation......11
2.1.3 Anaerobic digestion......12
2.1.4 Two phase processes......16
2.2 Waste/wastewater as feedstock......18
2.3 Fuel cell combined heat and power (CHP)......20
2.4 Biogas CHP......22
Chapter 3 Methodology......23
3.1 Process synthesis for food processing industry......23
3.2 Optimization for food processing industry......25
3.3 Comparative life cycle assessment (LCA) for food processing industry......31
3.4 Payback period for food processing industry......33
3.5 Sensitivity analysis for food processing industry......38
Chapter 4 Case study......39
Chapter 5 Result and discussion......45
5.1 Process synthesis for tofu factory......45
5.2 Optimization for tofu factory......55
5.3 Comparative LCA for tofu factory......79
5.4 Payback period for tofu factory......88
5.5 Decision making for tofu factory......95
5.6 Sensitivity analysis for tofu factory......98
5.7 Discussion – Advanced oxidation process is considered in reference scenario......111
Chapter 6 Conclusion......118
Chapter 7 Suggestions for future studies......121
Reference......123
Appendix......129
1.Conti, J. and P. Holtberg, International energy outlook 2011, 2011.
2.BP, B.P., BP Statistical Review of World Energy 2011.
3.UNFCC. United Nations Framework Convention on Climate Change. 2012; Available from: http://unfccc.int/ghg_data/ghg_data_unfccc/time_series_annex_i/items/3814.php.
4.BOE, B.o.E., 2009 Annual Report of Bureau of Energy, Ministry of Economic Affairs, Republic of Taiwan, 2009.
5.Chen, F., et al., Assessment of renewable energy reserves in Taiwan. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 2511-2528.
6.中華民國行政院環境保護署, 水污染防治措施計畫及許可申請審查辦法, 2006. p. 第一章第五條第一項.
7.Manish, S. and R. Banerjee, Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 2008. 33(1): p. 279-286.
8.Ntaikou, I., G. Antonopoulou, and G. Lyberatos, Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review. Waste and Biomass Valorization, 2010. 1(1): p. 21-39.
9.Argun, H. and F. Kargi, Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview. International Journal of Hydrogen Energy, 2011. 36(13): p. 7443-7459.
10.Kapdan, I.K. and F. Kargi, Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 2006. 38(5): p. 569-582.
11.Levin, D.B. and R. Chahine, Challenges for renewable hydrogen production from biomass. International Journal of Hydrogen Energy, 2010. 35(10): p. 4962-4969.
12.Hniman, A., S. O-Thong, and P. Prasertsan, Developing a thermophilic hydrogen-producing microbial consortia from geothermal spring for efficient utilization of xylose and glucose mixed substrates and oil palm trunk hydrolysate. International Journal of Hydrogen Energy, 2011. 36(14): p. 8785-8793.
13.Hawkes, F., et al., Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. International Journal of Hydrogen Energy, 2007. 32(2): p. 172-184.
14.RenNanqi, et al., Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr Opin Biotechnol, 2011. 22(3): p. 365-70.
15.Pandu, K. and S. Joseph, Comparisons and limitations of biohydrogen production processes: a review. International Journal of Advances in Engineering & Technology, 2012. 2(1): p. 342-356.
16.Basak, N. and D. Das, The Prospect of Purple Non-Sulfur (PNS) Photosynthetic Bacteria for Hydrogen Production: The Present State of the Art. World Journal of Microbiology and Biotechnology, 2006. 23(1): p. 31-42.
17.Akkerman, I., et al., Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 2002. 27(11–12): p. 1195-1208.
18.Koku, H., et al., Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 2002. 27(11–12): p. 1315-1329.
19.Serna, M.S.-I.E. Anaerobic digestion process. 2009; Available from: http://www.wtert.eu/default.asp?Menue=13&ShowDok=12.
20.Monnet, F., An introduction to anaerobic digestion of organic wastes, 2003, Remade: Scotland.
21.Hallenbeck, P.C., Fermentative hydrogen production: Principles, progress, and prognosis. International Journal of Hydrogen Energy, 2009. 34(17): p. 7379-7389.
22.Das, D. and T. Veziroglu, Advances in biological hydrogen production processes. International Journal of Hydrogen Energy, 2008. 33(21): p. 6046-6057.
23.Demirel, B. and O. Yenigun, Two phase anaerobic digestion processes: a review. Journal of Chemical Technology and Biotechnology, 2002. 77: p. 743-755.
24.Kim, S., Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy, 2004. 29(15): p. 1607-1616.
25.Zhu, H., et al., Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. International Journal of Hydrogen Energy, 1999. 24: p. 305-310.
26.Larminie, J. and A. Dicks, Fuel cell systems explained second edition2003: Wiley.
27.Inc., a.I.C., Technology characterization: Fuel cells, 2008: Environmental protection agency, combined heat and power partnership program, Washington, DC.
28.Murphy, J.D., E. McKeogh, and G. Kiely, Technical/economic/environmental analysis of biogas utilisation. Applied Energy, 2004. 77(4): p. 407-427.
29.Association, E.B., A biogas road map for Europe, 2009.
30.Rohstoffe, F.N., Biogas - an introduction, 2009: Federal Ministry of Food, Agriculture and Consumer Protection, Germany.
31.EPA, E.P.A. Effluent standards 2011; Available from: http://ivy5.epa.gov.tw/epalaw/search/LordiDispFull.aspx?ltype=06&lname=0060
32.曾治乾, 三級生物處理技術與實務介紹, 2003: 環境與安全衛生技術發展中心,工業技術研究院.
33.中華民國行政院環境保護署, 水污染防治費收費辦法, 2006. p. 第九條.
34.Hamby, D.M., A review of techniques for parameter sensitivity of environmental models. Environ. Monit. Assess., 1994. 32: p. 135-154.
35.Baumann, H. and A.M. Tillman, The hitch hiker's guide to LCA2004.
36.Iman, R.L. and J.C. Helton, An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk analysis, 1988. 8(1): p. 71-90.
37.Tan, Y.S., Personal communication with Yi-Fa Tofu Factory, Tainan, Taiwan, 2009.
38.Kim, M.S. and D.Y. Lee, Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresour Technol, 2010. 101 Suppl 1: p. S48-52.
39.呂冠霖 and 司洪濤, 高濃度COD廢水氧化處理技術評析.
40.Zhu, H., et al., Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges. International Journal of Hydrogen Energy, 2008. 33(14): p. 3651-3659.
41.Sreethawong, T., et al., Hydrogen production from glucose-containing wastewater using an anaerobic sequencing batch reactor: Effects of COD loading rate, nitrogen content, and organic acid composition. Chemical Engineering Journal, 2010. 160(1): p. 322-332.
42.Cooney, M., et al., Two-phase anaerobic digestion for production of hydrogen-methane mixtures. Bioresour Technol, 2007. 98(14): p. 2641-51.
43.TEDOM, Specification of micro chp - T30.
44.Rincón, B., et al., Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochemical Engineering Journal, 2008. 40(2): p. 253-261.
45.徐淑芳, et al., 電解還原-Fenton法處理半導體業高濃度有機廢水案例介紹, 2003: 經濟部能源局 工安環保報導.
46.Resnick, R.J., The economics of biological methods of hydrogen production, in Master of Science in the Management of Technology2004, Massachusetts Institute of Technology.
47.Svoboda, I.F., Anaerobic digestion, storage, oligolysis, lime, heat and aerobic treatment of livestock manures, in Final report of FEC Services LTD2003.
48.company, T.p., 2010.
49.G., P.A.o.R. LCA food database. 1997; Available from: www.lcafood.dk.
50.新能源事業部, 乘. 燃燒重油之CO2排放. Available from: http://www.co2hp.com/iks/co2_emission_table.pdf.
51.LCA food database. 2002; Available from: www.lcafood.dk.
52.Ecoinvent data version 2.2, 2010: Swiss centre for life cycle inventories, Switzerland.
53.documents, I., IPCC Guidlines 2006.
54.Biala, J., Short Report: The Benefits of Using Compost for Mitigating Climate Change, February 2011: Depart. Of Environment, Climate Change and Water NSW of Australia.
55.Zhang, R., et al., Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol, 2007. 98(4): p. 929-35.
56.Junker, B.H., Scale-up methodologies for E. coli and yeast fermentation processes. Journal of Bioscience and Bioengineering, 2004. 97: p. 347-364.
57.Industrial Development Bureau, M.o.E.A., Taiwan. Database of wastewater treatment plant. Available from: www.moeaidb.gov.tw/iphw/wuku/manage/Charge.xls.
58.Environmental Protection Administration, T. 恆春鎮堆肥場效益. Available from: http://www.epa.gov.tw/ch/artshow.aspx?busin=331&art=2008080417030159&path=11582.
59.Garcia-Montano, J., et al., Environmental assessment of different photo-Fenton approaches for commercial reactive dye removal. J Hazard Mater, 2006. 138(2): p. 218-25.
60.Muñoz, I., et al., Life-Cycle Assessment of a Coupled Advanced Oxidation-Biological Process for Wastewater Treatment: Comparison with Granular Activated Carbon Adsorption. Environmental Engineering Science, 2007. 24(5): p. 638-651.
61.H, A., Ecoinvent data version 2.2, 2007: Swiss centre for life cycle inventories, Switzerland.
62.Jungbluth, N., Ecoinvent data version 2.2, 2007: Swiss centre for life cycle inventories, Switzerland.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top