跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳旻修
研究生(外文):Min-ShiouWu
論文名稱:高雄地區奈米微粒之粒徑分布、化學組成及來源解析
論文名稱(外文):Size distribution, chemical composition, and source apportionment of nanoparticles in Kaohsiung
指導教授:吳義林
指導教授(外文):Yee-Lin Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:111
中文關鍵詞:奈米微粒化學成份分析粒徑分布正因子矩陣法污染源解析
外文關鍵詞:NanoparticlesChemical compositionsSize distributionsPositive matrix factorizationSource apportionment
相關次數:
  • 被引用被引用:4
  • 點閱點閱:790
  • 評分評分:
  • 下載下載:157
  • 收藏至我的研究室書目清單書目收藏:0
本研究自2011年11月始,於南部核心超級測站以高時間解析率之氣膠化學成份監測儀(Aerosol Chemical Speciation Monitor, ACSM)量測高雄市奈米微粒化學組成及濃度特性,同時亦以旋風分離器(Cyclone)監測PM1及PM2.5濃度,試圖探討三者之分布特性及關聯性。除此之外,本研究也利用正矩陣因子法(Positive Matrix Factorization, PMF)解析2010年11月至隔年2月超級測站奈米粒徑分析儀(Sequential mobility particle sizer and counter, SMPS+C)之數據,並輔以附近測站之氣象與氣固相污染物監測數據,判別高雄市奈米微粒之主要污染源類型、來源及其貢獻比例。
研究結果顯示,研究期間奈米微粒平均濃度為6.51 ± 3.97 µg/m3,各物種濃度與比例分別為OC:3.24 ± 1.98 (50 %)、SO42-:0.533 ± 0.388 (2 %)、NO3-:1.34 ± 1.00 (21 %)、NH4+:1.24 ± 0.766 (19 %)及Cl-:0.158 ± 0.171 (8 %),OC濃度趨勢與超測PM2.5及OC測值相關性頗高為0.705及0.593;PM2.5及PM1平均濃度為38.0 ± 16.9 µg/m3與23.3 ± 14.1 µg/m3,PM1/PM2.5為60.4 % ± 23.9 %。日間PM2.5平均濃度為38.2 µg/m3,PM1為23.3 µg/m3;夜間PM2.5平均濃度為37.8 µg/m3,PM1為23.3 µg/m3,日夜濃度並無顯著差異。本研究亦探討奈米微粒其他之離子碎片強度趨勢,由監測數據發現m/z 43、57為主要離子碎片,與移動源指標污染物CO及NOx相關性較佳,可見其與移動源之原生性排放具不錯相關性。
本研究以PMF解析得5個污染源,依據其粒徑分布、污染風花圖、貢獻量逐時圖及與氣固相污染物相關性等資料,結論各污染源之污染貢獻量及比例如下所示:1. 煤炭燃燒為主的工業源(8290 ± 5110 #/cm3;34.5 %)、2. 移動源(8060 ± 5110 #/cm3;33.2 %)、3. 重油燃燒為主之工業源(3760 ± 2270 #/cm3;20.0 %)、4. 光化核凝反應(1380 ± 2590 #/cm3;7.2 %)及5.由二次衍生物凝結主導之突發型核凝事件(1650 ± 3410 #/cm3;5.1 %)。另外,二工業源應是由左營、大社或仁武石油化學工業區而來,交通源應係國道一號及周圍道路而來之汽機車交通源。

In this study, we measure the characteristics of chemical compositions and concentrations of nanoparticles by the Aerosol Chemical Speciation Monitor (ACSM) at the southern PM supersite in Kaohsiung from November. 2011. In the meantime, we also measure PM1 and PM2.5 by cyclones to develop the chemical composition and relations between nanoparticles, PM1 and PM2.5. In addition, we analyze the size distribution datum of the Sequential Mobility Particle Sizer and Counter (SMPS+C) from November 2011 to February 2012 by Positive Matrix Factorization (PMF) to simulate the main sources and their contributions in Kaohsiung.
The average mass concentrations of nanoparticles were 6.51 ± 3.97 µg/m3, and the concentrations and ratio of each chemical species were OC: 3.24 ± 1.98 µg/m3 (50 %), SO42-: 0.533 ± 0.388 µg/m3 (2 %), NO3-: 1.34 ± 1.00 µg/m3 (21 %), NH4+: 1.24 ± 0.766 µg/m3 (19 %), and Cl-: 0.158 ± 0.171 µg/m3 (8 %), respectively. For PM2.5 and PM1, their average mass concentration were 38.0 ± 16.9 µg/m3 and 23.3 ± 14.1 µg/m3 and the PM1/PM2.5 ratio was 60.4 % ± 23.9 %. In daytime, PM2.5 and PM1 concentrations were 38.2 µg/m3 and 23.3 µg/m3, and there was no obvious differences comparing with the concentration in nighttime (37.8 µg/m3 and 23.3 µg/m3). We also develop different fragment ions of nanoparticles by the ACSM. The results indicated m/z 43 and m/z 57 were both main fragment ions, and they had positive correlations with CO and NOx which are both the index pollutants of the mobile sources.
For PMF analysis, we get 5 factors. According to factor profiles, conditional probability function, pollutant contribution datum, and the correlation with gas/solid phase pollutants, we conclude that the sources, pollutant contributions and proportions of each factors were as follows: 1. Industrial source by the coal combustion (8290 ± 5110 #/cm3; 34.5 %), 2. Mobile sources (8060 ± 5110 #/cm3; 33.2 %), 3. Industrial source by #6 oil combustion (3760 ± 2270 #/cm3; 20.0 %), 4. Nucleation by photochemical reaction (1380 ± 2590 #/cm3; 7.2 %), 5. Sudden nucleation by secondary pollutants condensations (1650 ± 3410 #/cm3; 5.1 %).

目錄
第1章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第2章 文獻回顧 3
2.1 大氣奈米懸浮微粒 3
2.1.1 大氣懸浮微粒定義、來源及特性 3
2.2 奈米微粒之定義 6
2.2.1 奈米微粒之形成與成長機制 7
2.2.2 奈米微粒之化學組成特性 8
2.2.3 奈米微粒對於環境之影響層面 11
2.2.4 懸浮微粒相關研究概況 13
2.2.5 高雄市懸浮微粒歷年研究及監測結果分析 16
2.3 受體模式 25
2.3.1 受體模式之發展沿革 25
2.3.2 正矩陣因子法(Positive Matrix Factorization, PMF) 26
2.3.3 受體模式之相關研究與應用 29
第3章 研究方法 32
3.1 研究架構 32
3.2 高污染季節懸浮微粒連續監測 33
3.2.1 監測作業規劃 33
3.2.2 監測地點概況 33
3.2.3 監測與分析方法 35
3.2.4 品保品管作業方法 37
3.3 超級測站數據整理 42
3.3.1 超級測站 42
3.3.2 超級測站監測儀器原理 42
3.4 高雄市奈米微粒污染源解析 44
3.4.1 PMF輸入資料建立 44
3.4.2 PMF模式執行與結果查核 46
3.4.3 條件機率函數(Conditional probability function, CPF) 49
第4章 結果與討論 50
4.1 高污染季節連續監測 50
4.1.1 監測期間環境背景說明 50
4.1.2 品保品管結果 53
4.1.3 懸浮微粒連續自動監測與手動採樣結果 56
4.1.4 奈米微粒與超級測站污染物趨勢探討 62
4.1.5 PM1及PM2.5手動採樣與超級測站PM2.5比對結果 63
4.1.6 特徵離子碎片探討 65
4.2 高雄市奈米微粒污染源解析 72
4.2.1 高雄市空品測站監測結果 72
4.2.2 PMF模式參數說明 75
4.2.3 污染源解析結果 77
4.2.4 奈米微粒污染源總括 97
第5章 結論與建議 101
5.1 結論 101
5.2 建議 103
第6章 參考文獻 104


Anastasio, C., Martin, S.T. 2001. Atmospheric nanoparticles. Reviews in Mineralogy and Geochemistry, 44, 293-349.
Appel, G.B., Cook, H.T., Hageman, G., Jennette, J.C., Kashgarian, M., Kirschfink, M., Lambris, J.D., Lanning, L., Lutz, H.U., Meri, S., Rose, N.R., Salant, D.J., Sethi, S., Smith, R.J.H., Smoyer, W., Tully, H.F., Tully, S.P., Walker, P., Welsh, M., Wurzner, R., Zipfel, P.F. 2005. Membranoproliferative glomerulonephritis type II (dense deposit disease): An update. Journal of the American Society of Nephrology, 16(5), 1392-1403.
Ashbaugh, L.L., Malm, W.C., Sadeh, W.Z. 1985. A Residence Time Probability Analysis of Sulfur Concentrations at Grand-Canyon-National-Park. Atmospheric Environment, 19(8), 1263-1270.
Buonanno, G., Ficco, G., Stabile, L. 2009. Size distribution and number concentration of particles at the stack of a municipal waste incinerator. Waste Management, 29(2), 749-755.
Chang, M.C.O., Chow, J.C., Watson, J.G., Hopke, P.K., Yi, S.M., England, G.C. 2004. Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. Journal of the Air & Waste Management Association, 54(12), 1494-1505.
Charron, A., Harrison, R.M. 2003a. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmospheric Environment, 37(29), 4109-4119.
Charron, A., Harrison, R.M. 2003b. Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere. Atmospheric Environment, 37, 4109-4119.
Deguchi, Y., Tanaka, N. 2005. Determination of organic compounds in nano-particles by laser breakdown and resonant ionization time-of-flight mass spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy, 60(7-8), 1236-1241.
Habre, R., Coull, B., Koutrakis, P. 2011. Impact of source collinearity in simulated PM(2.5) data on the PMF receptor model solution. Atmospheric Environment, 45(38), 6938-6946.
Ham, W.A., Kleeman, M.J. 2011. Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in central California. Atmospheric Environment, 45(24), 3988-3995.
Harrison, R., Miller, S. 1999. The contribution of clinical directors to the strategic capability of the organization. British Journal of Management, 10(1), 23-39.
Hellebust, S., Allanic, A., O'Connor, I.P., Wenger, J.C., Sodeau, J.R. 2010. The use of real-time monitoring data to evaluate major sources of airborne particulate matter. Atmospheric Environment, 44(8), 1116-1125.
Henry, R.C., Lewis, C.W., Hopke, P.K., Williamson, H.J. 1984. Review of Receptor Model Fundamentals. Atmospheric Environment, 18(8), 1507-1515.
Hinds, W.C. 1999. Aerosol Technology : Properties, Behaviour and Measurement of Airborne Particles. John Wiley & Sons, New York.
Hopke, P.K. 1991. An Introduction to Receptor Modeling. Chemometrics and Intelligent Laboratory Systems, 10(1-2), 21-43.
Hughes, L.S., Cass, G.R., Gone, J., Ames, M., Olmez, I. 1998. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environmental Science & Technology, 32(9), 1153-1161.
Kim, E., Hopke, P.K., Larson, T.V., Covert, D.S. 2004. Analysis of ambient particle size distributions using unmix and positive matrix factorization. Environmental Science & Technology, 38(1), 202-209.
Kirchstetter, T.W., Harley, R.A., Kreisberg, N.M., Stolzenburg, M.R., Hering, S.V. 1999. On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. Atmospheric Environment, 33(18), 2955-2968.
Kulmala, M., Suni, T., Lehtinen, K.E.J., Dal Maso, M., Boy, M., Reissell, A., Rannik, U., Aalto, P., Keronen, P., Hakola, H., Back, J.B., Hoffmann, T., Vesala, T., Hari, P. 2004a. A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry and Physics, 4, 557-562.
Kulmala, M., Vehkamaki, H., Petaja, T., Dal Maso, M., Lauri, A., Kerminen, V.M., Birmili, W., McMurry, P.H. 2004b. Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 35(2), 143-176.
Kumar, P., Fennell, P., Britter, R. 2008a. Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon. Science of the Total Environment, 402, 82-94.
Kumar, P., Fennell, P., Britter, R. 2008b. Measurements of particles in the 5-1000 nm range close to road level in an urban street canyon. Science of the Total Environment, 390, 437-447.
Kumar, P., Fennell, P., Langley, D., Britter, R. 2008c. Pseudo-simultaneous measurements for the vertical variation of coarse, fine and ultra fine particles in an urban street canyon. Atmospheric Environment, 42, 4304-4319.
Kumar, P., Robins, A., Vardoulakis, S., Britter, R. 2010. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmospheric Environment, 44(39), 5035-5052.
Lawson, C.L., Hanson, R.J. 1976. Solving Least Squares Problems. Society for Industrial Mathematics.
Lee, S., Liu, W., Wang, Y., G., R.A., E.S., E. 2008. Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmospheric Environment, 42(18), 4126-4137.
Lee, S., Russell, A.G. 2007. Estimating uncertainties and uncertainty contributors of CMB PM2.5 source apportionment results. Atmospheric Environment, 41(40), 9616-9624.
Malinowski, E.R. 1991. Factor analysis in chemistry. Wiley, New York.
Mohan, M., Payra, S. 2009. Influence of aerosol spectrum and air pollutants on fog formation in urban environment of megacity Delhi, India. Environmental Monitoring and Assessment, 151(1-4), 265-277.
NAPCA. 1969. Air Quality Criteria for Particulate Matter. 49, 450.
Nemmar, A., Hoet, P.H.M., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M.F., Vanbilloen, H., Mortelmans, L., Nemery, B. 2002. Passage of inhaled particles into the blood circulation in humans. Circulation, 105(4), 411-414.
Ng, N.L., Canagaratna, M.R., Jimenez, J.L., Zhang, Q., Ulbrich, I.M., Worsnop, D.R. 2011a. Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data. Environmental Science & Technology, 45(3), 910-916.
Ng, N.L., Herndon, S.C., Trimborn, A., Canagaratna, M.R., Croteau, P.L., Onasch, T.B., Sueper, D., Worsnop, D.R., Zhang, Q., Sun, Y.L., Jayne, J.T. 2011b. An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol. Aerosol Science and Technology, 45(7), 780-794.
Oberdorster, G., Oberdorster, E., Oberdorster, J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823-839.
Ogulei, D., Hopke, P.K., Chalupa, D.C., Utell, M.J. 2007. Modeling source contributions to submicron particle number concentrations measured in Rochester, New York. Aerosol Science and Technology, 41(2), 179-201.
Paatero, P. 1997. least squares formulation of robust nonnegative factor analysis. chemometrics and intelligent laboratory systems, 38, 223-242.
Paatero, P. 1999. The multilinear engine - A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics, 8(4), 854-888.
Paatero, P., Hopke, P.K. 2003. Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta, 490(1-2), 277-289.
Paatero, P., Hopke, P.K., Song, X.H., Ramadan, Z. 2002. Understanding and controlling rotations in factor analytic models. Chemometrics and Intelligent Laboratory Systems, 60(1-2), 253-264.
Paatero, P., Tapper, U. 1993. Analysis of different models of factor analysis as least squares fit problems. Chemometrics and intelligent laboratory systems, 18, 183-194.
Paatero, P., Tapper, U. 1994. Positive matrix factorization : a non-negative factor model with optimal utilization of error estimates of data value. Environmetrics, 5, 111-126.
Pakkanen, T.A., Loukkola, K., Korhonen, C.H., Aurela, M., Makela, T., Hillamo, R.E., Aarnio, P., Koskentalo, T., Kousa, A., Maenhaut, W. 2001. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmospheric Environment, 35(32), 5381-5391.
Pey, J., Perez, N., Castillo, S., Viana, M., Moreno, T., Pandolfi, M., Lopez-Sebastian, J.M., Alastuey, A., Querol, X. 2009. Geochemistry of regional background aerosols in the Western Mediterranean. Atmospheric Research, 94(3), 422-435.
Pilinis, C., Seinfeld, J.H. 1988. Development and Evaluation of an Eulerian Photochemical Gas Aerosol Model. Atmospheric Environment, 22(9), 1985-2001.
Seinfeld, J.H. 1986. Atmospheric chemistry and physics of air pollution. Wiley, New York.
Seinfeld, J.H., Pandis, S.N. 2006. Atmospheric Chemistry and Physics - From Air Pollution to Climate Change. John Wiley & Sons, New york.
Seinfeld, J.H., Pandis, S.N. 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. J. Wiley, New York.
Shi, J.P., Evans, D.E., Khan, A.A., Harrison, R.M. 2001. Sources and concentration of nanoparticles (( 10 nm diameter) in the urban atmosphere. Atmospheric Environment, 35(7), 1193-1202.
Shi, J.P., Harrison, R.M. 1999. Investigation of ultrafine particle formation during diesel exhaust dilution. Environmental Science & Technology, 33(21), 3730-3736.
Stanier, C.O., Khlystov, A.Y., Pandis, S.N. 2004a. Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmospheric Environment, 38(20), 3275-3284.
Stanier, C.O., Khlystov, A.Y., Pandis, S.N. 2004b. Nucleation events during the Pittsburgh air quality study: Description and relation to key meteorological, gas phase, and aerosol parameters. Aerosol Science and Technology, 38, 253-264.
Tsai, Y.I., Kuo, S.C., Lee, W.J., Chen, C.L., Chen, P.T. 2007. Long-term visibility trends in one highly urbanized, one highly industrialized, and two Rural areas of Taiwan. Science of the Total Environment, 382(2-3), 324-341.
Turpin, B.J., Huntzicker, J.J., Larson, S.M., Cass, G.R. 1991. Los-Angeles Summer Midday Particulate Carbon - Primary and Secondary Aerosol. Environmental Science & Technology, 25(10), 1788-1793.
U.S.EPA. 2008. EPA PMF 3.0 User's Guide. National Exposure Research Laboratory, Research Triangle Park, NC 27711.
Wallace, L.A., Emmerich, S.J., Howard-Reed, C. 2004. Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environmental Science & Technology, 38(8), 2304-2311.
Watson, J.G., Chow, J.C., Lowenthal, D.H., Kreisberg, N.M., Hering, S.V., Stolzenburg, M.R. 2006. Variations of nanoparticle concentrations at the Fresno Supersite. Science of the Total Environment, 358(1-3), 178-187.
Woo, K.S., Chen, D.R., Pui, D.Y.H., Wilson, W.E. 2001. Use of continuous measurements of integral aerosol parameters to estimate particle surface area. Aerosol Science and Technology, 34(1), 57-65.
Xie, Y.L., Hopke, P.K., Paatero, P., Barrie, L.A., Li, S.M. 1999. Locations and preferred pathways of possible sources of Arctic aerosol. Atmospheric Environment, 33(14), 2229-2239.
Zhang, Q., Jimenez, J.L., Canagaratna, M.R., Allan, J.D., Coe, H., Ulbrich, I., Alfarra, M.R., Takami, A., Middlebrook, A.M., Sun, Y.L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P.F., Salcedo, D., Onasch, T., Jayne, J.T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R.J., Rautiainen, J., Sun, J.Y., Zhang, Y.M., Worsnop, D.R. 2007. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 34(13).
Zhou, L.M., Hopke, P.K., Paatero, P., Ondov, J.M., Pancras, J.P., Pekney, N.J., Davidson, C.I. 2004. Advanced factor analysis for multiple time resolution aerosol composition data. Atmospheric Environment, 38(29), 4909-4920.
Zhou, L.M., Hopke, P.K., Stanier, C.O., Pandis, S.N., Ondov, J.M., Pancras, J.P. 2005. Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization. Journal of Geophysical Research-Atmospheres, 110(D7).
Zhu, Y.F., Hinds, W.C., Kim, S., Sioutas, C. 2002. Concentration and size distribution of ultrafine particles near a major highway. Journal of the Air & Waste Management Association, 52(9), 1032-1042.
雷侑蓁(2005),「空氣懸浮微粒心肺毒性研究」,國立台灣大學職業醫學與工業衛生研究所博士論文。
劉山豪(2000),「高雄市都會區消光係數與能見度量測及細微粒污染源貢獻量解析」,國立中山大學環境工程研究所碩士論文。
王信凱(2008),「高雄都會區與中部鄉村多環芳香烴化合物濃度特徵之研究」,國立中山大學環境工程研究所博士論文。
蔡俊鴻、林銳敏,2004,大氣奈米微粒化學組成特性與氣相前驅物質關聯性研究(III),國科會研究報告,NSC93-2621-Z006-001。
張凱倫(2004),「大氣奈米微粒無機鹽類組成特性研究」,國立成功大學環境工程研究所碩士論文。
簡智祥(2006),「高屏地區冬季奈米微粒分佈、來源與成長特性」,國立成功大學環境工程研究所碩士論文。
郭聖嘉(2011),「南台灣奈米微粒粒徑分佈與成長特性分析」,國立成功大學環境工程研究所碩士論文。
環境檢驗所(2006),「空氣中懸浮微粒(PM2.5)之檢測方法-衝擊式手動法」,(NIEA A205.10C)
黃堯聖(2006),「大氣懸浮微粒化學組成及來源推估。」,輔英科技大學環境工程與科學系碩士論文。
蔡德明、吳義林(1997)「高屏地區大寮測站PM2.5及PM10之組成特徵研究」,1998年氣膠研討會,P339-346。
李家青(2001),「潮洲地區大氣中懸浮微粒PM1/PM2.5/PM10成份特性之探討」,國立屏東科技大學環境工程與科學系碩士論文。
林家和(2000),「PM1/PM2.5/PM10氣懸微粒特性之探討」,國立台灣大學環境衛生研究所碩士論文。
陳邦瑋(2006),「從台北都會區細氣膠特性評估PM1及PM2.5對環境影響的顯著性」,國立中央大學環境工程研究所碩士論文。
郭正傑(2007),「南部懸浮微粒超級測站之自動監測儀器與手動方法之比對」,國立成功大學環境工程研究所碩士論文。
林昆明(2005),「台灣西部地區露天農廢燃燒污染物之傳輸效應」,國立台灣大學環境工程研究所碩士論文。
陳冠志(1998),「南高屏地區PM10 懸浮微粒污染來源之探討」,國立成功大學環境工程研究所碩士論文。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊