跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/31 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉彥甫
研究生(外文):Yen-FuLiu
論文名稱:應用Fluent模式針對雲林麥寮離島工業區揚塵與海鹽之收集效率研究
論文名稱(外文):Using Fluent Model to study the collection efficiencies for the marine aerosol and the wind blow dust at Yun-Lin Offshore Industrial Park
指導教授:吳義林
指導教授(外文):Yee-Lin Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:156
中文關鍵詞:揚塵海鹽Fluent防塵柵網
外文關鍵詞:Wind blow dustSea saltFLUENTdust-proof barrier
相關次數:
  • 被引用被引用:6
  • 點閱點閱:792
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:0
雲林麥寮離島工業區位處濁水溪與台灣海峽之交界地帶,是濁水溪河口泥砂淤積之主要地區,加上冬季風速經常可達10m/s以上,高風速與豐富的泥砂來源剛好是形成揚塵之主要兩種條件,此外,雲林麥寮離島工業區為填海造陸而成,遂四周皆為海洋,在強風吹拂下,海鹽飛沫容易飄進廠區,促使管線之鏽蝕加速,因此揚塵與海鹽為影響此地區之重要課題;而在此工業區中,西北堤防處又是首當其衝之地區,因此本研究之主要研究目標即著眼於此處。
本研究中,最主要之目的為設計一防塵柵網,研究其對於麥寮離島工業區沿海地帶揚塵與海鹽之收集效率。藉由現場量測西北堤各處地形結構後,再配合由六輕廠區提供之養護道路及防風林寬度與長度,設計出欲模擬之整體結構;在完成整體模型之設計後,利用現場實地量測資料作為Fluent流體力學計算模式之輸入參數,包含初始之風速條件、進風角度、揚塵與海鹽之粒徑等等,瞭解設計不同之防塵柵網其對於揚塵與海鹽之收集效率為何,研究出最佳之防塵柵網設計與收集效率。現場實地量測資料包含架設風速風向儀以瞭解該地區微氣象場之詳細狀況,現場沙粒之實地採樣與大氣懸浮微粒採樣,包括TSP、PM10、PM2.5以及MOUDI,瞭解現場揚塵與海鹽之實際濃度與粒徑分佈狀況,最後再將取得之砂樣與懸浮微粒樣品進行離子層析儀分析,瞭解其詳細成分資料。
從現場量測結果中得知,於研究期間內,西北堤防處主要皆受到東北季風之影響,風向範圍皆在北北東風至東北風之間,且堤防區附近之風速有近50%之機率會大於10m/s,如此更容易造成海岸邊之風砂現象;而六輕麥寮海岸邊海砂採樣後之分析結果顯示最主要重量分佈之粒徑範圍是在300~600 μm 、150~300 μm與90~150 μm這三個粒徑範圍內,其中又以150~300 μm為重量比例最高之粒徑範圍(占總質量中超過50%),海鹽飛沫之粒徑分佈則係主要在10μm微粒以下,最主要是在1.8~3.2μm與3.2~5.6μm,分別各佔約接近20%,其中又以3.2~5.6μm此一粒徑範圍為最主要之分佈區域。
將量測得到之風速與海砂粒徑分佈當成數值模擬之條件後,可得到在西北堤處對於揚塵防制較理想之結構為底部3m高之實心擋牆,上部則是3m高的均勻透孔擋牆,而在均勻透孔擋牆中,又以孔隙率0.7之均勻透孔擋牆是最理想之結構設計,因其對於該地區之揚塵防制效率可達91.7%,但此結構對於海鹽之防制效率不到10%,因此針對目前研究之結果來說,均勻透孔擋牆能對揚塵有極高之防制效益,但針對小粒徑之海鹽卻無法起到有效之防制。

Yun-Lin Offshore Industrial Park is located in the downstream of the Cho-shui River. There are lots of sand will deposit in this area and in the winter, this area’s wind speed often exceed 10m/s. High wind speed and abundant sediment source are the two important factors of wind blow dust. Besides, Yun-Lin Offshore Industrial Park is surrounded by the sea, sea salt can easily enter to the industrial park and the sea salt will speed up rusting. Therefore, wind blow dust and sea salt are the main impact in this region.
The main objective of this research is to design a dust-proof barrier and using CFD model-Fluent to study its collection efficiency of the wind blow dust and the sea salt. By measuring the on-site terrain data of the northwest dike, we can design the overall structure which we want to simulate. After designing the overall structure, the on-site measurement data can be used to setup the Fluent model input parameters, which includes the initial wind speed conditions、dust and sea salt particle size and so forth. In this study, it will simulate many different barriers and find out the optimization design. On-site measurement data includes wind speed and direction、sand sampling and atmospheric suspended particles sampling, which includes TSP、PM10、PM2.5 and MOUDI (Micro-Orifice Uniform Deposition Impactors) . By measuring these data, we could understand not only the sea salt concentration and particle size distribution, but also the sand concentration and particle size distribution.
Learned from the results of on-site measurements during the study period, the wind speed and direction in the northwest dike are mainly influenced by Northeasterly wind, wind direction range are in the north-east to northeasterly winds and the wind speed often exceed 10m/s. Sand sampling analytic data shows that the weight of sand are mainly distributed in the three particle size range, 300 ~ 600 μm、150 ~ 300 μm and 90 ~ 150 μm. Among the three particle size, 150 ~ 300 μm occupies more than 50% weight percentage. On the other hand, the atmospheric suspended particulate sampling reveals that sea salt droplet size distribution is below 10μm, After simulating all the different barriers, we can find out that the best structure design’s total height is recommended to 6 m. The bottom of the best structure is made of solid concrete, and its height is 3 m. The upper of the best structure is made of porous barrier, and its height is 3 m, too. In the simulating results, porosity 0.7 is the optimization design. For wind blow dust, the dust-proof barrier collection efficiency can reach 91.7%, but for sea salt, its collection efficiency is less than 10%. In summary, porous barrier can well defend the wind blow dust, but it can’t effectively defend the sea salt which belongs to the small size particle.

第 1 章 、緒論 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究流程與架構 4
第 2 章 、文獻回顧 6
2.1 雲林麥寮離島工業區風砂研究 6
2.1.1 雲林麥寮離島工業區簡介 6
2.1.2 濁水溪流域特性 6
2.1.3 飛砂運動機制 7
2.1.4 飛砂推估量經驗公式 8
2.1.5 雲林地區飛砂與相關研究 12
2.2 海鹽飛沫相關研究 14
2.2.1 海洋性氣膠 14
2.2.2 海鹽飛沫形成機制 14
2.2.3 海鹽飛沫相關研究 16
2.2.4 海鹽飛沫量推估公式 20
2.3 風速垂直剖面分佈 22
2.3.1 平均風速對數剖面分佈 23
2.3.2 平均風速指數剖面分佈 24
2.4 Fluent模式介紹 25
2.4.1 CFD介紹 25
2.4.2 Fluent模式 26
第 3 章 、研究方法 28
3.1 微氣象監測 28
3.1.1 風速風向監測設備 28
3.1.2 微氣象站架設地點與狀況 30
3.2 現場砂樣成分與粒徑分佈調查 33
3.2.1 採樣地點 33
3.2.2 再捲揚腔分析 34
3.2.3 震動篩分析 35
3.3 大氣懸浮微粒採樣 37
3.3.1 懸浮微粒採樣方法 37
3.3.1.1 總懸浮微粒TSP、PM10與PM2.5採樣方法 37
3.3.1.2 微孔均勻沉降衝擊器(MOUDI)採樣方法 38
3.3.2 採樣地點與架設 39
3.3.3 採樣日期與時間 41
3.3.3.1堤防區 41
3.3.3.2南亞DOP廠區 42
3.3.3.3 B閘門區 43
3.4 分析方法 44
3.4.1 秤重、萃取 45
3.4.2 離子層析儀 45
3.5 品保與品管 47
3.5.1 數據整理之品保與品管 47
3.5.2 採樣方法之品保與品管 47
3.5.3 樣品分析之品保與品管 48
3.6 FLUENT數值模擬 50
3.6.1 基本概念 52
3.6.1.1有限體積法 52
3.6.1.2基本方程式 52
3.6.1.3離散格式 55
3.6.2 數值方法 55
3.6.3 邊界條件 57
3.6.3.1入口邊界條件 57
3.6.3.2出口邊界條件 57
3.6.3.3邊壁條件 57
第 4 章 、結果與討論 59
4.1 風場監測結果 59
4.1.1 西北堤堤防區風場監測結果 59
4.1.2 南亞DOP廠區 60
4.1.3 B閘門區 62
4.1.4 區域性風速風向結果統整 63
4.2 砂塵特性之採樣分析 64
4.2.1 再捲揚腔分析 64
4.2.2 震動篩分析 65
4.3 大氣懸浮微粒特性之採樣分析 68
4.3.1 大氣懸浮微粒粒徑分佈 68
4.3.2 大氣懸浮微粒濃度分佈 71
4.4 防塵結構數值模擬 73
4.4.1 防塵單元之模擬結果 73
4.4.2 原地形與單層不透風柵網模擬結果 77
4.4.3 不同防塵單元在整體結構下之數值模擬 83
4.4.3.1 砂塵模擬部分 84
4.4.3.2海鹽模擬部分 85
4.4.4 不同孔隙率擋風牆之模擬 88
4.4.5 30度進風角度與90度進風角度之模擬 90
4.4.6 孔隙率0.7之透風擋牆在近似30°進風角度時之模擬 93
4.4.7 孔隙率0.7之透風擋牆加高後之數值模擬 95
4.4.8 雙層透風結構ø=0.7之數值模擬 97
4.4.9 揚塵收集機制探討 101
第 5 章 、結論與建議 105
5.1 結論 105
5.2 建議 107
第 6 章 、文獻回顧 108

American National Standard, 1982. Minimum design loads for buildings and other structures, American National Standard Institute,. New York
Andreas, E.L., Edson, J.B., Monahan, E.C., Rouault, M.P., Smith, S.D. 1995. The Spray Contribution to Net Evaporation from the Sea - a Review of Recent Progress. Boundary-Layer Meteorology, 72(1-2), 3-52.
Bangold, R.A. 1941. The Physics of Blown Sand and Desert Dunes.
Bauer, B.O., Sherman, D.J., Nordstrom, K.F., Gares, P.A. 1990. Aeolian transport measurement and prediction across a beach and dune at Castroville Califonia. Coastal Dunes : Forms and Process 39-55.
Blanchard, D.C. 1963. The electrification of the atmosphere by particle from bubbles in the sea. Prog. Oceanog. , 1, 171-202.
Blanchard, D.C., Woodcock, A.H. 1957. Bubble formation and modification in the sea and its meteorological significance. . Tellus, 9, 145-158.
Blanco, H., Lal, R. 2008. Principles of Soil Conservation and Management. Springer Science.
Bressan, D.J., Lepple, F.K. 1983. Dependence of Sea Salt Aerosol Concentration on Various Environmental Parameters. Abstracts of Papers of the American Chemical Society, 185(Mar), 147-ANYL.
Chamberlain, A.C. 1983. Roughness Length of Sea, Sand, and Snow. Boundary-Layer Meteorology, 25(4), 405-409.
Chepil, W.S. 1945. Dynamics of Wind Erosion: III. the Transport Capacity of the Wind. Soil Sci., 60(6), 475-480.

Counihan, J. 1975. Adiabatic Atmospheric Boundary-Layers - Review and Analysis of Data from Period 1880-1972. Atmospheric Environment, 9(10), 871-905.
Davenport, A.G. 1965. The relationship of wind structure to wind loading, in Processing of the Symposium on Wind Effects on Building and Structures. National Physical Laboratory, 1, 53-102.
De Leeuw, G. 1986. Vertical profiles of giant particles close above the sea surface. Tellus 38B, 51-61.
Dong, Z.B., Liu, X.P., Wang, H.T., Zhao, A.G., Wang, X.M. 2003. The flux profile of a blowing sand cloud: a wind tunnel investigation. Geomorphology, 49(3-4), 219-230.
Exton, H.J., Latham, J., Park, P.M., Smith, M.H., Allan, R.R. 1986. The production and dispersal of maritime aerosol. In Oceanic Whitecaps, 175-193.
Exton, H.J., Latham, J., Park, P.M., Smith, M.H., Allan, R.R., Perry, S.J. 1985. The production and dispersion of marine aerosol. Q. Jl. R. Met. Sot., 111, 817-837.
Fitzgerald, J.W. 1991. Marine Aerosols - a Review. Atmospheric Environment Part a-General Topics, 25(3-4), 533-545.
Gras, J.L., Ayers, G.P. 1983. Marine Aerosol at Southern Mid-Latitudes. Journal of Geophysical Research-Oceans and Atmospheres, 88(Nc15), 661-666.
Holland, H.D. 1978. The Chemistry of the Atmosphere and Oceans. . New York 154.
Hsu, S.A. 1977. Boundary layer meteorological research in the coastal zone. Geosci. Man, XVIII, 99-111.
Kawamura, R. 1951. Study of sand movement by wind. Univ. of Tokyo, Inst. of Sci. and Technol.

Lovett, R.F. 1978. Quantitative Measurement of Airbone Sea-Salt in North-Atlantic. Tellus, 30(4), 358-364.
Monahan, E.C. 1986. The ocean as a source of atmospheric particles. . In The Role of Air-Sea Exchange in Geochemical Cycling 129-163.
Monahan, E.C. 1971. Oceanic whitecaps. J. phys. Oceanogr., 1, 139-144.
Monahan, E.C., Fairall, C.W., Davidson, K.L., P., J.B. 1983. Observed inter-relationships amongst 10m elevation winds, oceanic whitecaps, and marine aerosols. . Q. Jl R. met. Soc., 109, 379-392.
Nair, P.R., Parameswaran, K., Abraham, A., Jacob, S. 2005. Wind-dependence of sea-salt and non-sea-salt aerosols over the oceanic environment. Journal of Atmospheric and Solar-Terrestrial Physics, 67(10), 884-898.
Nakashima, A. 1979. A fundamental study on the blown sand control. Bull. Kyushu Univ., Forests, 51, 125-183.
ODowd, C.D., Smith, M.H., Consterdine, I.E., Lowe, J.A. 1997. Marine aerosol, sea-salt, and the marine sulphur cycle: A short review. Atmospheric Environment, 31(1), 73-80.
Quinn, P.K., Bates, T.S., Miller, T.L., Coffman, D.J., Johnson, J.E., Harris, J.M., Ogren, J.A., Forbes, G., Anderson, T.L., Covert, D.S., Rood, M.J. 2000. Surface submicron aerosol chemical composition: What fraction is not sulfate? Journal of Geophysical Research-Atmospheres, 105(D5), 6785-6805.
Quinn, P.K., Coffman, D.J., Bates, T.S., Miller, T.L., Johnson, J.E., Voss, K., Welton, E.J., Neususs, C. 2001. Dominant aerosol chemical components and their contribution to extinction during the Aerosols99 cruise across the Atlantic. Journal of Geophysical Research-Atmospheres, 106(D18), 20783-20809.
Raemdonck, H., Maenhaut, W., Andreae, M.O. 1986. Chemistry of marine aerosols over the tropical and equatorial Pacific. J. geophys. Res. , 91, 8623-8636.
Spalding, D.B., Launder, B.E. 1974. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering., 3, 269-289.
Toba, Y., Chaen, M. 1973. Quantitative expression of the breaking of wind waves on the sea surface. . Record, Oceanogr. Works Japan, 12, 1-11.
Twomey, S. 1977. Atmospheric Aerosols. Elsevier, Amsterdam.
Versteeg, H.K., Malalasekera, W. 2007. An Introduction to Computational Fluid Dynamics: The Finite Volume Method Approach. 2nd ed. England: Pearson Education.
Vijayakumar, G., Parameswaran, K., Rajan, R. 1998. Aerosols in the atmospheric boundary layer and its association with surface wind speed at a coastal site. Journal of Atmospheric and Solar-Terrestrial Physics, 60(16), 1531-1542.
Wang, C.S., Street, R.L. 1978. Measurements of Spray at an Air-Water-Interface. Dynamics of Atmospheres and Oceans, 2(2), 141-152.
Wanot, J. 1966. Computational fluid dynamics methods in ship design. R&D projects from Germany.
White, R.E. 2006. Principles and practice of soil science: The soil as a natural resource. 4 ed. Blackwell Science.
Woodcock, A.H. 1953. Salt nuclei in marine air as a function of attitude and wind force. . J. Meterol., 10, 362-371.
Zingg, A.W. 1952. Wind tunnel studies of the movement of sedimentary material. Proc. 5th Hydraulics Conf., 111-135.
Ansys Fluent User’s Guide-13.0.
Blanchard, D.C., Woodcock, A.H., 1980, The production, concentration, and vertical distribution of the sea-salt aerosol., Annals New York Academy of Science,330-347.
Chuen-Jinn Tsai and Yu-Hsiang Cheng, 1995 ,: Solid Particle Collection Characteristics on Impaction Surfaces of Different Designs, Aerosol Science and Technology, 23(1), 96-106.
Dale Gillett. 1978. A wind tunnel simulation of the erosion of soil: effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production. Atmospheric Environment 12,1735-1743.
Hagen, L. J., Sharratt, B.,S. van Pelt. 2010. Estimating the saltation and suspension components from field wind erosion, Aeolian Research 1, 147-153.
Hall, J.S., Wolff, E. W., 1998, Atmospheric Environment ,32,3669-3677.
Kim, D.S., Lee, K.W., Kim, Y. J., 2006, Characterization of a particle trap impactor, Aerosol Science, 37, 1016-1023.
ODowd, C.D., Smith, M.H.,1993, Physicochemical Properties of Aerosols Over the Northeast Atlantic:Evidence for Wind-Speed-Related Submicron Sea-Salt Aerosol Production., Geophysical research,98, 1137-1149.
Parameswaran, K., Vijayakumar, G., Krishna Murthy, B. V., Krishna Moorthy, K., 1994, Effect of Wind Speed on Mixing Region Aerosol Concentrations at a Tropical Coastal Station., Journal of Applied Meteorology,34,1392-1397.
Vimlesh Pant, Deshpande, C.G., Kamra, A.K., 2009, The concentration and number size distribution measurements of the Marine Boundary Layer aerosols over the Indian Ocean. Atmospheric Research, 92, 381-393.


Virgil A. Marple, Kenneth L. Rubow & Steven M. Behm (1991): A Micro-orifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use, Aerosol Science and Technology, 14(4), 434-446.
Virgil A. Marple and Klaus Willeke, 1976, Impactor Design, Atmospheric Environment, 10,891-896
Zhou, L. X., Soo, S. L., 1990, Gas-solid flow and collection of solids in a cyclone separator., Powder Technology, 63,45-53
游繁結,1989,濁水溪河口飛砂量之調查與研究,農林學報第38卷第一期,75-104。
林宗儀,1998,雲林海岸的風砂活動現況,第20屆海洋工程研討會論文集,443-447。
林宗儀,1999,雲林海岸風砂搬運量的估算,第21屆海洋工程研討會論文集,389-393。
林宗儀,2000,雲林海岸風砂搬運現場實測,第22屆海洋工程研討會論文集,447-452。
林宗儀,2003,溼砂對風砂搬運的影響,第25屆海洋工程研討會論文集,685-688。
林雅谷,2005,風沙與地形變動之試驗研究,國立成功大學水利及海洋工程研究所碩士論文。
林德貴、劉昱麟、黃隆明、劉文宗,2011,利用FDM模式分析河床揚塵-以大甲溪為例,水土保持學報43(3),239–258。
李芳君、余進利、江文山、溫進丁,2003,雲林海岸地區風飛砂調查,第25屆海洋工程研討會論文集,677-684。
國立高雄技術學院,1997,雲林縣濁水溪南岸揚塵問題特徵與減輕對策研究,雲林縣環保局。
黃金山,1987,濁水溪河口飛砂調查研究報,行政院國家科學委員會防災科技研究報告76-14號。
蕭葆羲、謝淳泰,海岸地區紊流邊界層通過堤狀構造物之風場實驗研究,
蔡秉直、蕭葆羲,2007,海岸地區堤狀地形對氣狀污染物擴散與流場特性效應實驗探討,第29屆海洋工程研討會論文集,147-152
郭崇義、林昭遠、林傳堯、黃隆明、望熙榮,2009,河川揚塵對中部大氣懸浮微粒影響程度之評估,行政院環境保護署計畫。
黃隆明、陳天慈、范姜明威,2011,台灣中部河口飛砂及揚塵之調查與研究,水土保持學報43(3),259–276。
戚啟勛、陳孟青,1993,台灣之氣候,中央氣象局出版。
朱震達、劉恕,1989,中國北方砂漠化及其治理,北京,科學出版社。
楊明,2008,單層多孔隙風擋對低層建築風力通風之效應分析,中華大學碩士論文。
謝正義、蔡宗翰,2007,非均勻地形之紊流擴散模擬,農業工程學報,53(4),56-68。
謝正展,2002,低層建築物表面風壓之實驗研究,國立中央大學土木工程研究所碩士論文。
林金賢,2011,行人風場之數值模擬預測與風洞試驗的比較,淡江大學水資源及環境工程學系博士論文。
張家銘,2011,孔隙消能結構物之三維度流場數值研析,國立臺灣大學生物資源暨農學院生物環境系統工程學系碩士論文。
謝鎮仰,2009,不可壓縮流在不同管道中的流力與熱傳特性分析,淡江大學航空太空工程學系碩士論文。
許朔甄,2010,小型風車流場數值模擬與效能分析,淡江大學航空太空工程學系碩士論文。
王福軍,2004,計算流體動力學分析-CFD軟件原理與應用,清華大學出版社。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top