跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:姚智元
研究生(外文):Chih-YuanYao
論文名稱:薄膜材質與混凝前處理對UF阻塞現象影響之研究
論文名稱(外文):The Effect of Membrane Material and Pre-coagulation on UF Membrane Fouling
指導教授:葉宣顯
指導教授(外文):Hsuan-Hsien Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:98
中文關鍵詞:UF膜阻塞優養化混凝鋁型態NOMPVCCA
外文關鍵詞:Ulreafiltrationfoulingeutrophicationcoagulationaluminum speciesNOMPVCCA
相關次數:
  • 被引用被引用:2
  • 點閱點閱:432
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:0
現今水庫優養化情形日益嚴重,而當以UF (Ultrafiltration)薄膜處理優養化原水時,水中自然有機物(NOM)是造成薄膜阻塞的原因之一,而不同材質之薄膜對於其阻塞程度又有所不同,其通量表現與水中有機物組成、薄膜之材質及性質、孔洞大小等皆有關聯,由於本研究之重點在於溶解性NOM對UF膜阻塞之影響,故將採集南台灣水庫優養化天然原水,經 0.45μm薄膜過濾器過濾,然後將濾液,以自行配製之不同鋁形態PACl在不同劑量下進行混凝,探討對水中溶解性有機物去除之情形。再取上澄液用PVC (Polyvinyl Chloride)及CA (Cellulose Acetate)材質之中空絲纖維(Hollow-fiber)膜進行過濾,探討混凝前處理以及不同材質之薄膜對通量之影響及對有機物去除之效果。
混凝前處理結果顯示,在高混凝劑量下,混凝劑PACl0 (B = 0)對溶解性有機物去除效果高於PACl20 (B = 2)。是由於PACl20中鋁物種以聚合鋁(Alb)為主;而PACl0成分以單體鋁(Ala)為主。在高劑量下,混凝劑PACl0在水解過程中形成聚合鋁並消耗鹼度,使pH值降至6.3左右。此pH值接近氫氧化鋁最低溶解度,因此形成大量Al(OH)3(s),並幫助吸附水中溶解性有機物。
薄膜試驗結果顯示,混凝對PVC膜及CA通量改變皆有正面效果,而由電子顯微鏡(Scanning Electron Microscopy, SEM)觀察膜表面之阻塞物結構,經混凝前處理者與未經混凝者也有明顯不同,顯示混凝改變阻塞物之型態,推測可能使薄膜上cake層趨於多孔性質,進而幫助通量恢復。
PVC膜之通量下降速率隨混凝劑量增加而下降,而經HPSEC (High Performance Size Exclusion Chromatography)分析結果顯示,PVC膜可去除大分子的biopolymers,但對其他分子量之分子則無法去除。且在混凝程序中,隨混凝劑增加,biopolymers去除效果逐漸增加,而PVC膜通量之下降程度逐漸減輕,顯示biopolymers為造成PVC膜阻塞的主要原因。在CA膜通量方面,原水過膜與經混凝後過膜通量有明顯差異,也顯示混凝對通量有恢復效果,但在不同混凝劑量間通量卻無明顯差異。
由HPSEC結果顯示,CA膜除了能去除biopolymers,也可去除部分小分子酸。由於此類小分子酸屬親水性物質,而CA膜屬親水性膜,因此有較高親和力使其被吸附於薄膜上。比較CA膜之通量以及HPSEC之圖譜後發現,在原水過膜通量有兩階段阻塞,是因biopolymers之分子量約105,而CA膜之MWCO (Molecular Weight Cut Off)為100 kDa,因此阻塞形態偏向孔徑密封,造成在初期通量下降較快,隨後cake層形成,通量下降速率減緩而形成兩階段阻塞。再者由於小分子酸不容易被混凝去除,且分子量遠小於薄膜孔洞大小,所以推測即使經過混凝,小分子酸仍有可能在薄膜孔洞內被吸附,因此造成不同混凝劑量間通量差異不大。

Eutrophication is becoming a serious problem for reservoirs today. Natural organic matter (NOM) may cause fouling when using UF (Ultrafiltration) membrane to treat eutrophicated source water. Fouling phenomena can be varied with the organic contents in the feed water, membrane material, and pore size, etc. In this study, the effect of coagulation pretreatment and the material of hollow-fiber UF membrane on NOM fouling was studied. The source water from an eutrophic reservoir in souther Taiwan was collected. As this study was focused on the dissolved organic part, the source water was firstly filtered by 0.45 μm membrane filter. Secondly, the filtrate was subjected to coagulation by laboratory-prepared polyaluminum chloride (PACl), with different basicity (B value). Then the filtrated and the caogulation-treated water were filtered through bench-scale hollow-fiber UF membrane unit under constant pressure. Two kind of UF membranes with different material were tested, namely polyvinyl chloride (PVC) and cellulose acetate (CA).
The coagulation results show that at high dosage PACl0 (B = 0) had high dissolved organic removal that of PACl20 (B = 2). The explanation is: the dominant aluminum species in PACl0 are monomeric aluminum species (Ala), while those in PACl20 are polymeric aluminium species (Alb). At higher dosage, the hydrolysis of PACl0 to form polymeric aluminum species, would consume alkalinity, and drop the pH to lower value, around 6.3. At this pH value, large amount of Al(OH)3(s) could form, and facilitate the DOC removal via adsorption.
Coagulation pretreatment was found to improve the performance of both PVC and CA based UF membrane filtration by reducing flux decline rate. Based on SEM images, it can be noticed that cake layer structure on fouled membranes were different between those from feed water with and without precoagulation. Apparently, coagulation altered the cake layer, probably made it more porous.
Based on the results from HPSEC (High Performance Size Exclusion Chromatography), the PVC membrane was found to remove only the microorganism-related extracellular polymer substance (EPS) fraction of NOM, while the CA membrane removed portion of low-molecular weight acids (LMW acids), in addition to EPS fraction. LMW acids could be removed because it was hydrophilic, and tented to be adsorbed by hydrophilic CA membranes. Further, the flux decline rate of PVC membrane was found to be reduced with increasing PACl dosage of precoagulation. As the EPS removal during coagulation was also increased with increasing coagulant dosage, it is speculated that EPS were the main foulant of PVC membrane.
For CA membrane, the flux decline rate curve of the un-precoagulated feed water showed two stages type, with a fast decline first stage, and a low second decline stage after that. It was speculated that the initial fast flux decline was caused by pore blocking, as the molecular weight of large amount of EPS in the un-precoagulated feed water was closed to the pore size of CA membrane. Further, the effect of PACl dosage on CA membrane flux decline was not as obvious as that of PVC membrane. This is probably due to the lower coagulation removal efficiency of LMW acids, which may cause membrane fouling by adsorption inside the pore.

摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XII
第一章、前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章、文獻回顧 3
2-1 水體優養化所衍生之問題 3
2-2 水中有機物之特性 5
2-2-1 NOM之簡介 5
2-2-2 水體有機物鑑定分析技術 7
2-2-2-1螢光偵測有機物之原理及特性 7
2-2-2-2 SEC偵測分子量之原理及特性 12
2-3 混凝程序 16
2-3-1 混凝機制 16
2-3-2 鋁鹽之水解型態 22
2-4 薄膜程序 24
2-4-1 薄膜種類及過濾機制 24
2-4-2 薄膜材質 26
2-4-3 薄膜模組 29
2-4-4過濾方式及流動狀態 29
2-4-5 UF薄膜簡介、過濾原理及應用 31
2-5 薄膜阻塞 33
2-5-1 薄膜阻塞型態 33
2-5-2 NOM所引起之薄膜阻塞 35
2-6 混凝前處理和薄膜過濾 38
2-6-1 混凝前處理對薄膜效能之改善 38
2-6-2 混凝前處理對薄膜效能之負面影響 40
2-6-3 混凝劑量與操作條件對薄膜效能之影響 41
第三章、實驗程序與方法 45
3-1 實驗程序 45
3-2 混凝劑聚氯化鋁之製備 47
3-3 混凝瓶杯試驗 49
3-4 薄膜過濾實驗 50
3-5 水質分析 53
3-5-1 殘餘鋁分析 53
3-5-2 pH值 54
3-5-3 UV254吸光值 54
3-5-4 濁度 54
3-5-5 非揮發溶解性有機碳(NPDOC) 55
3-5-6 膠羽表面電位測定 56
3-5-7 高性能粒徑排除層析儀 58
3-5-8 螢光激發/發散陣列光譜儀 60
3-6 膜表面分析 60
第四章、結果與討論 61
4-1混凝結果 61
4-1-1 原水性質分析 61
4-1-2 不同混凝劑對原水混凝結果比較 65
4-2薄膜過濾結果 73
4-2-1 PVC膜過濾結果分析 73
4-2-2 CA膜過濾結果分析 80
4-2-3 PVC與CA膜過濾結果比較 87
第五章 結論與建議 89
5-1結論 89
5-2建議 90
引用文獻 91

Acero, J. L., F. J. Benitez, F. J. Real and C. Garcia (2009). Removal of phenyl-urea herbicides in natural waters by UF membranes: Permeate flux, analysis of resistances and rejection coefficients. Separation and Purification Technology 65(3): 322-330.
Aiken, G. R., D. McKnight, R. L. Weshaw and P. MacCarthy (1985). An introduction to humic substances in soil, sediment and water.. Humic Substances in Soil, Sediment and Water. G. R. Aiken, D. McKnight, R. L. Weshaw and P. MacCarthy. New York, John Wiley & Sons.
Amy, G. (2008). Fundamental understanding of organic matter fouling of membranes. Desalination 231(1-3): 44-51.
Ates, N., L. Yilmaz, M. Kitis and U. Yetis (2009). Removal of disinfection by-product precursors by UF and NF membranes in low-SUVA waters. Journal of Membrane Science 328(1-2): 104-112.
Baker, A., N. Hudson and D. Reynolds (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters - A review. River Research and Applications 23(6): 631-649.
Baranowska, I. and B. Kowalski (2011). Using HPLC Method with DAD Detection for the Simultaneous Determination of 15 Drugs in Surface Water and Wastewater. Polish Journal of Environmental Studies 20(1): 21-28.
Belfort, G., R. H. Davis and A. L. Zydney (1994). The Behavior of Suspensions and Macromolecular Solutions in Cross-Flow Microfiltration. Journal of Membrane Science 96(1-2): 1-58.
Bernhardt, H. and H. Schell (1982). Energy-Input-Controlled Direct-Filtration to Control Progressive Eutrophication. Journal American Water Works Association 74(5): 261-268.
Berset, J. D., R. Brenneisen and C. Mathieu (2010). Analysis of llicit and illicit drugs in waste, surface and lake water samples using large volume direct injection high performance liquid chromatography - Electrospray tandem mass spectrometry (HPLC-MS/MS). Chemosphere 81(7): 859-866.
Betancourt, C., F. Jorge, R. Suarez, M. Beutel and S. Gebremariam (2010). Manganese sources and cycling in a tropical eutrophic water supply reservoir, Paso Bonito Reservoir, Cuba. Lake and Reservoir Management 26(3): 217-226.
Bridgeman, J., M. Bieroza and A. Baker (2009). Relating freshwater organic matter fluorescence to organic carbon removal efficiency in drinking water treatment. Science of the Total Environment 407(5): 1765-1774.
Cai, Z. X. and M. M. Benjamin (2011). NOM Fractionation and Fouling of Low-Pressure Membranes in Microgranular Adsorptive Filtration. Environmental Science & Technology 45(20): 8935-8940.
Carroll, T., S. King, S. R. Gray, B. A. Bolto and N. A. Booker (2000). The fouling of microfiltration membranes by NOM after coagulation treatment. Water Research 34(11): 2861-2868.
Chae, S. R., H. Yamamura, K. Ikeda and Y. Watanabe (2008). Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination. Water Research 42(8-9): 2029-2042.
Chen, C., X. J. Zhang, L. X. Zhu, J. Liu, W. J. He and H. D. Han (2008). Disinfection by-products and their precursors in a water treatment plant in North China: Seasonal changes and fraction analysis. Science of the Total Environment 397(1-3): 140-147.
Chen, W., P. Westerhoff, J. A. Leenheer and K. Booksh (2003). Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology 37(24): 5701-5710.
Cheryan, M. (1998). Ultrafiltration and Microfiltration Handbook. lancaster, Pa., Technomic Publishing.
Choi, Y., H. Oh, S. Lee, Y. Choi, T. M. Hwang, G. S. Baek and Y. K. Choung (2010). Large-pore membrane filtration with coagulation as an MF/UF pretreatment process. Desalination and Water Treatment 15(1-3): 149-159.
Collins, M. R., G. L. Amy and C. Steelink (1986). Molecular-Weight Distribution, Carboxylic Acidity, and Humic Substances Content of Aquatic Organic-Matter - Implications for Removal during Water-Treatment. Environmental Science & Technology 20(10): 1028-1032.
Combe, C., E. Molis, P. Lucas, R. Riley and M. M. Clark (1999). The effect of CA membrane properties on adsorptive fouling by humic acid. Journal of Membrane Science 154(1): 73-87.
Costa, A. R., M. N. de Pinho and M. Elimelech (2006). Mechanisms of colloidal natural organic matter fouling in ultrafiltration. Journal of Membrane Science 281(1-2): 716-725.
Crittenden, J. C., R. R. Trussell, D. W. Hand, K. J. Howe and G. Tchobanoglous (2005). Water treatment: principles and design. Hoboken, New Jersey, John Wiley & Sons, Inc.
Dong, B. Z., Y. Chen, N. Y. Gao and J. C. Fan (2007). Effect of coagulation pretreatment on the fouling of ultrafiltration membrane. Journal of Environmental Sciences-China 19(3): 278-283.
Fabris, R., C. W. K. Chowa, M. Drikas and B. Eikebrokk (2008). Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Research 42(15): 4188-4196.
Fabris, R., E. K. Lee, C. W. K. Chow, V. Chen and M. Drikas (2007). Pre-treatments to reduce fouling of low pressure micro-filtration (MF) membranes. Journal of Membrane Science 289(1-2): 231-240.
Fan, L. H., J. L. Harris, F. A. Roddick and N. A. Booker (2001). Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Research 35(18): 4455-4463.
Fu, X. Y., T. Maruyama, T. Sotani and H. Matsuyama (2008). Effect of surface morphology on membrane fouling by humic acid with the use of cellulose acetate butyrate hollow fiber membranes. Journal of Membrane Science 320(1-2): 483-491.
Gao, B. Y., Y. B. Chu, Q. Y. Yue, B. J. Wang and S. G. Wang (2005). Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al-13 content. Journal of Environmental Management 76(2): 143-147.
Gao, B. Y., Z. L. Yang, B. C. Cao, W. Y. Xu and Q. Y. Yue (2011). Effect of OH(-)/Al(3+) ratio on the coagulation behavior and residual aluminum speciation of polyaluminum chloride (PAC) in surface water treatment. Separation and Purification Technology 80(1): 59-66.
Gregor, J. E., C. J. Nokes and E. Fenton (1997). Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation. Water Research 31(12): 2949-2958.
Guo, X. Y., H. Q. Shao, W. L. Hu and H. Shen (2011). Fouling potential and cleaning characteristics of PVC ultrafiltration membrane during ultrafiltration of hydrophilic dissolved organic matter. Desalination and Water Treatment 33(1-3): 231-239.
Haberkamp, J., A. S. Ruhl, M. Ernst and M. Jekel (2007). Impact of coagulation and adsorption on DOC fractions of secondary effluent and resulting fouling behaviour in ultrafiltration. Water Research 41(17): 3794-3802.
Hashino, M., K. Hirami, T. Katagiri, N. Kubota, Y. Ohmukai, T. Ishigami, T. Maruyama and H. Matsuyama (2011). Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling. Journal of Membrane Science 379(1-2): 233-238.
Her, N., G. Amy, D. Foss, J. Cho, Y. Yoon and P. Kosenka (2002). Optimization of method for detecting and characterizing NOM by HPLC-size exclusion chromatography with UV and on-line DOC detection. Environmental Science & Technology 36(5): 1069-1076.
Her, N., G. Amy, D. Foss and J. W. Cho (2002). Variations of molecular weight estimation by HP-size exclusion chromatography with UVA versus online DOC detection. Environmental Science & Technology 36(15): 3393-3399.
Howe, K. J. and M. M. Clark (2002). Coagulation pretreatment for membrane filtration. West Quincy Avenue, Denver, CO, USA., Awwa Research Foundation and American Water Works Association.
Hu, C. Z., H. J. Liu, J. H. Qu, D. S. Wang and J. Ru (2006). Coagulation behavior of aluminum salts in eutrophic water: Significance of Al-13 species and pH control. Environmental Science & Technology 40(1): 325-331.
Huang, H., K. Schwab and J. G. Jacangelo (2009). Pretreatment for Low Pressure Membranes in Water Treatment: A Review. Environmental Science & Technology 43(9): 3011-3019.
Huber. Variability of NOM in tap waters. from http://www.doc-labor.de/html/dw1.html.
Iancu, V. I., J. Petre and L. Cruceru (2011). Determination of Some Organophosphorus Insecticides and Urea Herbicides from Water by Hplc. Journal of Environmental Protection and Ecology 12(3): 833-840.
Jacangelo, J. G., J. Demarco, D. M. Owen and S. J. Randtke (1995). Selected Processes for Removing Nom - an Overview. Journal American Water Works Association 87(1): 64-77.
Jack, A. M. and M. M. Clark (1998). Using PAC-UF to treat a low-quality surface water. Journal American Water Works Association 90(11): 83-95.
Jang, N. Y., Y. Watanabe and S. Minegishi (2005). Performance of ultrafiltration membrane process combined with coagulaton/sedimentation. Water Science and Technology 51(6-7): 209-219.
Jarvis, P., B. Jefferson and S. A. Parsons (2004). Characterising natural organic matter flocs. Water Science and Technology: Water Supply 4(4): 79-87.
Jermann, D., W. Pronk, S. Meylan and M. Boller (2007). Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production. Water Research 41(8): 1713-1722.
Jobin, R. and M. M. Ghosh (1972). Effect of Buffer Intensity and Organic-Matter on Oxygenation of Ferrous Iron. Journal American Water Works Association 64(9): 590-&.
Jucker, C. and M. M. Clark (1994). Adsorption of Aquatic Humic Substances on Hydrophobic Ultrafiltration Membranes. Journal of Membrane Science 97: 37-52.
Judd, S. J. and P. Hillis (2001). Optimisation of combined coagulation and microfiltration for water treatment. Water Research 35(12): 2895-2904.
Kabsch-Korbutowicz, M. (2005). Effect of Al coagulant type on natural organic matter removal efficiency in coagulation/ultrafiltration process. Desalination 185(1-3): 327-333.
Katsoufidou, I. S., D. C. Sioutopoulos, S. G. Yiantsios and A. J. Karabelas (2010). UF membrane fouling by mixtures of humic acids and sodium alginate Fouling mechanisms and reversibility. Desalination 264(3): 220-227.
Kennedy, M. D., J. Kamanyi, B. G. J. Heijman and G. Amy (2008). Colloidal organic matter fouling of UF membranes: role of NOM composition & size. Desalination 220(1-3): 200-213.
Kim, S. G., S. H. Joung, C. Y. Ahn, S. R. Ko, S. M. Boo and H. M. Oh (2010). Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from a eutrophic reservoir. Fems Microbiology Ecology 74(1): 93-102.
Kimura, K., Y. Hane and Y. Watanabe (2005). Effect of pre-coagulation on mitigating irreversible fouling during ultrafiltration of a surface water. Water Science and Technology 51(6-7): 93-100.
Kimura, K., Y. Hane, Y. Watanabe, G. Amy and N. Ohkuma (2004). Irreversible membrane fouling during ultrafiltration of surface water. Water Research 38(14-15): 3431-3441.
Kimura, K., T. Maeda, H. Yamamura and Y. Watanabe (2008). Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water. Journal of Membrane Science 320(1-2): 356-362.
Kuzmenko, D., E. Arkhangelsky, S. Belfer, V. Freger and V. Gitis (2005). Chemical cleaning of UF membranes fouled by BSA. Desalination 179(1-3): 323-333.
Lee, E. K., V. Chen and A. G. Fane (2008). Natural organic matter (NOM) fouling in low pressure membrane filtration - effect of membranes and operation modes. Desalination 218(1-3): 257-270.
Lee, J. and H. W. Walker (2008). Mechanisms and factors influencing the removal of microcystin-LR by ultrafiltration membranes. Journal of Membrane Science 320(1-2): 240-247.
Lee, J. D., S. H. Lee, M. H. Jo, P. K. Park, C. H. Lee and J. W. Kwak (2000). Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment. Environmental Science & Technology 34(17): 3780-3788.
Lee, N. H., G. Amy, J. P. Croue and H. Buisson (2004). Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Research 38(20): 4511-4523.
Letterman, R. D., A. A. Amirtharajah and C. R. O'Melia (1999). Coagulation and Flocculation. Water Quality & Treatment. New York, McGraw-Hill.
Li, Y. H., J. Wang, W. Zhang, X. J. Zhang and C. Chen (2011). Effects of coagulation on submerged ultrafiltration membrane fouling caused by particles and natural organic matter (NOM). Chinese Science Bulletin 56(6): 584-590.
Lin, C. F., T. Y. Lin and O. J. Hao (2000). Effects of humic substance characteristics on UF performance. Water Research 34(4): 1097-1106.
Lowe, J. and M. M. Hossain (2008). Application of ultrafiltration membranes for removal of humic acid from drinking water. Desalination 218(1-3): 343-354.
Maartens, A., P. Swart and E. P. Jacobs (1999). Feed-water pretreatment: methods to reduce membrane fouling by natural organic matter. Journal of Membrane Science 163(1): 51-62.
Moresoli, C., R. H. Peiris, H. Budman and R. L. Legge (2011). Development of a species specific fouling index using principal component analysis of fluorescence excitation-emission matrices for the ultrafiltration of natural water and drinking water production. Journal of Membrane Science 378(1-2): 257-264.
Nakamura, K. and K. Matsumoto (2006). Properties of protein adsorption onto pore surface during microfiltration: Effects of solution environment and membrane hydrophobicity. Journal of Membrane Science 280(1-2): 363-374.
Park, P. K., C. H. Lee, S. J. Choi, K. H. Choo, S. H. Kim and C. H. Yoon (2002). Effect of the removal of DOMs on the performance of a coagulation-UF membrane system for drinking water production. Desalination 145(1-3): 237-245.
Pivokonska, L. and M. Pivokonsky (2007). On the fractionation of natural organic matter during water treatment. Journal of Hydrology and Hydromechanics 55(4): 253-261.
Qu, J. H., H. J. Liu, C. Z. Hu and H. Zhao (2009). Coagulation of humic acid by PACl with high content of Al(13): The role of aluminum speciation. Separation and Purification Technology 70(2): 225-230.
Randtke, S. J. (1988). Organic Contaminant Removal by Coagulation and Related Process Combinations. Journal American Water Works Association 80(5): 40-56.
Schafer, A. I., U. Schwicker, M. M. Fischer, A. G. Fane and T. D. Waite (2000). Microfiltration of colloids and natural organic matter. Journal of Membrane Science 171(2): 151-172.
Semmens, M. J. and A. B. Staples (1986). The Nature of Organics Removed during Treatment of Mississippi River Water. Journal American Water Works Association 78(2): 76-81.
Shibutani, T., T. Kitaura, Y. Ohmukai, T. Maruyama, S. Nakatsuka, T. Watabe and H. Matsuyama (2011). Membrane fouling properties of hollow fiber membranes prepared from cellulose acetate derivatives. Journal of Membrane Science 376(1-2): 102-109.
Sillanpaa, M., A. Matilainen, E. T. Gjessing, T. Lahtinen, L. Hed and A. Bhatnagar (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83(11): 1431-1442.
Sillanpaa, M., A. Matilainen and M. Vepsalainen (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science 159(2): 189-197.
Snoeyink, V. L. a. D. J. (1980). Water Chemistry. New York, John Wiley & Sons, Inc.
Striegel, A. L., W. W. Yau, J. J. Kirkland and D. D. Bly (2009). Modren Size-Exclusion Liquid Chromatography. New Jersey, John Wiley & Sons.
Suffet, I. H., J. Mallevialle and E. Kawczynski (1995). Advances in taste-and-odor treatment and control. West Quincy, American Water Works Association Research Foundation & Lyonnaise des Eaux
Sun, X. H., D. M. Kanani and R. Ghosh (2008). Characterization and theoretical analysis of protein fouling of cellulose acetate membrane during constant flux dead-end microfiltration. Journal of Membrane Science 320(1-2): 372-380.
Swietlik, J., A. Dabrowska, U. Raczyk-Stanislawiak and J. Nawrocki (2004). Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Research 38(3): 547-558.
Thurman, E. M. (1985). Organic Geochemistry of Natural Water. Dordrecht, Martinus Nijhoff/Dr W. Junk.
Tian, J. Y., Z. L. Chen, Y. L. Yang, H. Liang, J. Nan and G. B. Li (2010). Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water. Water Research 44(1): 59-68.
Vaidya, S. R., U. K. Kharul, S. D. Chitambar, S. D. Wanjale and Y. S. Bhole (2004). Removal of hepatitis A virus from water by polyacrylonitrile-based ultrafiltration membranes. Journal of Virological Methods 119(1): 7-9.
Vanbenschoten, J. E. and J. K. Edzwald (1990). Chemical Aspects of Coagulation Using Aluminum Salts .1. Hydrolytic Reactions of Alum and Polyaluminum Chloride. Water Research 24(12): 1519-1526.
Vo-Dinh, T. (1981). Luminescence Spectrometry. Analytical Measurements and Instrumentation for Process and Pollution Control. P. N. C. H. J. Perlis. Michigan, Ann Arbor Science.
Wang, D. S., T. Li, Z. Zhu, C. H. Yao and H. X. Tang (2006). Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technology 168(2): 104-110.
Wang, D. S., M. Q. Yan, J. H. Qu, W. J. He and C. W. K. Chow (2007). Relative importance of hydrolyzed Al(III) species (Al-a, Al-b, and Al-c) during coagulation with polyaluminum chloride: A case study with the typical micro-polluted source waters. Journal of Colloid and Interface Science 316(2): 482-489.
Wang, J., J. Guan, S. R. Santiwong and T. D. Waite (2008). Characterization of floc size and structure under different monomer and polymer coagulants on microfiltration membrane fouling. Journal of Membrane Science 321(2): 132-138.
Wang, J., J. Guan, S. R. Santiwong and T. D. Waite (2010). Effect of aggregate characteristics under different coagulation mechanisms on microfiltration membrane fouling. Desalination 258(1-3): 19-27.
Wang, X. M. and T. D. Waite (2008). Gel layer formation and hollow fiber membrane filterability of polysaccharide dispersions. Journal of Membrane Science 322(1): 204-213.
Wang, Z. W., Z. C. Wu and S. J. Tang (2009). Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research 43(9): 2504-2512.
Westerhoff, P., W. Chen, J. A. Leenheer and K. Booksh (2003). Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology 37(24): 5701-5710.
Wu, F. C., R. D. Evans and P. J. Dillon (2003). Separation and characterization of NOM by high-performance liquid chromatography and on-line three-dimensional excitation emission matrix fluorescence detection. Environmental Science & Technology 37(16): 3687-3693.
Xu, W. Y., B. Y. Gao, R. R. Mao and Q. Y. Yue (2011). Influence of floc size and structure on membrane fouling in coagulation-ultrafiltration hybrid process-The role of Al(13) species. Journal of Hazardous Materials 193: 249-256.
Yan, M. Q., D. S. Wang, J. R. Ni, J. H. Qu, W. J. Ni and J. Van Leeuwen (2009). Natural organic matter (NOM) removal in a typical North-China water plant by enhanced coagulation: Targets and techniques. Separation and Purification Technology 68(3): 320-327.
Yan, Y., H. Li and M. L. Myrick (2000). Fluorescence fingerprint of waters: Excitation-emission matrix spectroscopy as a tracking tool. Applied Spectroscopy 54(10): 1539-1542.
Yoon, Y., S. Sinha, G. Amy and J. Yoon (2004). Determining the effectiveness of conventional and alternative coagulants through effective characterization schemes. Chemosphere 57(9): 1115-1122.
Zhang, Y., J. Y. Tian, H. Liang, J. Nan, Z. L. Chen and G. B. Li (2011). Chemical cleaning of fouled PVC membrane during ultrafiltration of algal-rich water. Journal of Environmental Sciences-China 23(4): 529-536.
Zularisam, A. W., A. F. Ismail and R. Salim (2006). Behaviours of natural organic matter in membrane filtration for surface water treatment - a review. Desalination 194(1-3): 211-231.
王鵬堯 (1990). 螢光分析用於自來水原水中有機物偵測可行性之研究, 國立成功大學.
邱承美 (1981). 儀器分析原理, 科文出版社.
莊典謨 (1990). 水中鋁含量分析方法之研究及其在淨水工程上之應用, 國立成功大學.
葉宣顯 (1985). 臭氧處理對水中有機物混凝去除之影響, 國立成功大學.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top