跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳緻紘
研究生(外文):Chih-HungChen
論文名稱:以生物復育法進行土壤及海洋油污染之生物可及性研究
論文名稱(外文):The Bioavailability of Petroleum Hydrocarbon Contaminants in Soil and Seawater
指導教授:黃良銘黃良銘引用關係
指導教授(外文):Liang-Ming Whang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:139
中文關鍵詞:生物可及性土壤有機質分配作用細胞固定化
外文關鍵詞:Bioavailabilitysoil organic matterpartitionImmobilized cells
相關次數:
  • 被引用被引用:2
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
近年來,生物復育因為整治費用低廉、對環境較友善等優點,常用來處理受石油碳氫化合物污染的環境,但其缺點為整治時間需時較長,且生物降解效率會取決於環境因子。本研究主要探討油污污染在常見的土壤與海水中可能影響生物復育效率的生物可及性因子和策略。
關於土壤受油污染部分,研究的目的在於探討石油碳氫化合物分配到土壤有機質的行為,是否會影響生物降解效率。實驗設計採用批次方法,分別探討土壤-水相以及土壤固相兩種環境下、不同土壤有機質比例的油污染土壤之生物降解效率。額外添加石油碳氫化合物作為污染物,分別為Heptadecane、Pristane和Naphthalene,並利用生物添加技術(bioaugment)處理土壤中的目標有機污染物。土壤-水相實驗結果顯示,低土壤有機質在時間內有較好的降解效率;模擬實際污染場址的土壤固相批次實驗結果,卻顯示不同土壤有機質比例會影響前期的生物降解效率,但pH、含水率以及孔隙率等環境因子亦隨土壤有機質而改變、導致微生物活性有所差異,在眾多因子同時作用下,土壤有機質的多寡便和生物可及性沒有直接確切的關係。
關於海水油污部分,目標在解決海洋稀釋所造成的生物可及性問題,本研究以台灣沿海海域為範疇、馴養出當地海域的油降解菌,並結合細胞固定化技術進行生物復育。實驗以柴油作為污染源,海水採樣後經馴化、細胞固定化、進行效能評估及持久性測試,以批次結果評估運用到實場之潛力。結果顯示在台灣各海域採樣的海水皆可馴化出油降解菌群、細胞固定化後微生物仍能保有活性,效能評估方面模擬現實海水環境以固定化顆粒進行油降解、在14天內降解效率僅47.25%,然而在提供足量氮磷源後、降解效率可高達91.90%,顯示未來進行實場復育時、營養鹽提供的必要性;持久性批次方面,356天後包埋顆粒仍具有活性、結構亦完整,透過飢餓測試亦證明即使長時間未能接觸油污、包埋顆粒仍可保有活力。

Bioremediation is such a good way to treat petroleum pollutant since its low cost and environmental friendly acting. The objective in this study is to solve the bioavailability problems in soil and marine phases during bioremediation.
For contaminated soil, since the non-polar organic compounds would partition into soil organic matters (SOM). The objective in this part is to understand whether partitioning into SOM of petroleum hydrocarbons would affect the bioavailability or not. The experiment design is in batch module, using bioaugment technology to treat three kinds of target organic compounds, Heptadecane, Pristane and Naphthalene, in soil-water phase so as single- soil phase respectively, and the parameter is SOM ratio. The result shows that low SOM ratio condition did have better degrading efficiency in soil-water phase. However, in single-soil batch, different SOM ratio not only affects the primary biodegrading efficiency, but also applying different conditions such as pH, water content, and hydraulic conductivity of soil so that forming different microbe culture, that is, there are so many factors would affect the efficiency of biodegradation at the same time.
For oil spill out, the main factor of bioavailability is dilution. Thus, the objective in this part is to solve dilution problem by feeding back the immobilized microorganism which were enriched from native seawater at laboratory. Diesel is the target petroleum pollutant in this research. Take seawater samples around Taiwan to do the enrichment and the entrapment. After that, set serial batch tests to check the diesel removal efficiency and the long term activity of entrapped cells. The result shows that all the seawater samples did enrich oil degrading microbes successfully. The degrading efficiency was 47.25% for entrapped cells at virtual marine condition. Furthermore, if provide enough nutrients (phosphate and nitrate), the efficiency would up to 91.90%. That is, it’s necessary to provide extra nutrients while applying this methodology in the ocean. For the persistence test, the entrapped cells kept active for at least 356 days, even though passing long time starvation the entrapped cells still could do function.

摘要 I
Abstract II
誌謝 III
目錄 V
表目錄 IX
圖目錄 XI
第一章 前言 1
第二章 文獻回顧 3
2.1 油品污染 3
2.1.1 受油品污染土壤概況 3
2.1.2 海洋油品污染概況 4
2.1.3 油品污染的整治技術 6
2.1.4 油品污染處置相關規範 8
2.2 石油碳氫化合物 11
2.2.1 石油碳氫化合物分類 11
2.2.2 石油碳氫化合物在環境的宿命 12
2.2.3 石油碳氫化合物之生物降解 15
2.3 生物復育技術 19
2.3.1 油品污染之生物復育技術種類 19
2.3.2 生物復育技術執行策略 20
2.3.3 生物復育的限制因子 22
2.4 生物可及性 24
2.4.1 生物可及性定義 24
2.4.2 土壤環境之生物可及性探討 26
2.4.3 海洋環境之生物可及性探討 29
2.5 細胞固定化技術 30
2.5.1 細胞固定化技術特色 30
2.5.2 細胞固定化技術的選擇 31
2.5.3 包埋法 32
第三章 材料與方法 33
3.1 土壤-水相分配作用對生物可及性影響實驗 33
3.1.1 實驗架構 33
3.1.2 批次前處理 34
3.1.3 土壤-水相批次試驗(Slurry Batch) 36
3.1.4 土壤固相批次試驗 37
3.2 細胞固定化應用於海洋油污降解實驗 39
3.2.1 實驗架構 39
3.2.2 採樣(Sampling)與馴化(Enrichment) 40
3.2.3 細胞固定化顆粒製備 43
3.2.4 效能評估批次試驗 44
3.2.5 固定化顆粒持久性試驗 48
3.3 實驗材料 50
3.3.1 石油碳氫化合物分解菌 50
3.3.2 石油碳氫化合物標準品 52
3.3.3 土壤 53
3.3.4 培養基 54
3.4 分析方法 56
3.4.1 石油碳氫化合物分析 56
3.4.2 氣體組成分析 59
3.4.3 菌落數分析 60
3.4.4 菌相分析 62
3.4.5 土壤性質 67
3.4.6 水質分析 69
第四章 結果與討論 73
4.1 土壤-水相生物可及性試驗 73
4.1.1 Heptadecane 生物降解批次 73
4.1.2 Naphthalene 生物降解批次 79
4.1.3 微生物活性和污染物降解關聯的探討 82
4.1.4 土壤-水相生物可及性探討 83
4.1.5 小結 86
4.2 土壤固相之生物可及性批次試驗 87
4.2.1 污染物降解趨勢 87
4.2.2 微生物族群消長 92
4.2.3 土壤性質差異 96
4.2.4 小結 98
4.3 海洋油污降解菌馴化試驗 99
4.3.1 基本資訊 99
4.3.2 以二氧化碳生成評估馴化效能 101
4.3.3 以微生物表現評估馴化效能 101
4.3.4 小結 103
4.4 細胞固定化應用於海洋效能評估批次試驗 104
4.4.1 包埋懸浮比較批次 104
4.4.2 營養鹽添加批次 107
4.4.3 初始菌量對降解效能影響 112
4.4.4 包埋顆粒拆瓶批次 115
4.4.5 小結 118
4.5 固定化顆粒持久性試驗 119
第五章 結論與建議 121
5.1 結論 121
5.1.1 土壤-水相分配作用對生物可及性影響實驗 121
5.1.2 細胞固定化應用於海洋油污降解實驗 121
5.2 建議 122
第六章 參考文獻 123
第七章 附錄 133


Abou, S. M., & Maachi, R. Biodegradation of naphthalene by free and alginate entrapped Pseudomonas sp. Zeitschrift für Naturforschung. C, Journal of biosciences, 58(9-10), 726.(2003)
Admon, S., Green, M., & Avnimelech, Y. Biodegradation kinetics of hydrocarbons in soil during land treatment of oily sludge. Biorernediation Journal, 5(3), 193-209.(2001)
Adriaens, P., & Focht, D. D. Continuous coculture degradation of selected polychlorinated biphenyl congeners by Acinetobacter spp. in an aerobic reactor system. Environmental science & technology, 24(7), 1042-1049.(1990)
Alexander, M., Biodegradation and bioremediation: Academic Press Inc.,(1994)
Alexander, M. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental science & technology, 34(20), 4259-4265.(2000)
Amann, R. I., Ludwig, W., & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological reviews, 59(1), 143-169.(1995)
Aneez Ahamad, P., & Mohammad Kunhi, A. Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Biodegradation, 1-13.(2011)
Atlas, R. M., & Hazen, T. C. Oil biodegradation and bioremediation: A tale of the two worst spills in US history. Environmental science & technology.(2011)
Atlas, R. M. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological reviews, 45(1), 180.(1981)
Atlas, R. M. Petroleum microbiology. Macmillan Publishing, New York, 579. (1984)
Atlas, R. M. Microbial hydrocarbon degradation—bioremediation of oil spills. Journal of Chemical Technology & Biotechnology, 52(2), 149-156.(1991)
Atlas, R. M. Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin, 31(4-12), 178-182.(1995)
Atlas, R. M., & Bartha, R. Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous. Biotechnology and bioengineering, 14(3), 309-318.(1972)
Atlas, R. M., & Bartha, R. Hydrocarbon biodegradation and oil spill bioremediation. Advances in microbial ecology, 12, 287-338.(1992)
Baheri, H., & Meysami, P. Feasibility of fungi bioaugmentation in composting a flare pit soil. Journal of hazardous materials, 89(2), 279-286.(2002)
Baker, K. H., & Herson, D. S., Bioremediation: McGraw-Hill, Inc.,(1994)
Boopathy, R. Factors limiting bioremediation technologies. Bioresource technology, 74(1), 63-67.(2000)
Bosma, T.N.P., Middeldorp, P.J.M., Schraa, G., & Zehnder, A.J.B. Mass transfer limitation of biotransformation: quantifying bioavailability. Environmental science & technology, 31(1), 248-252.(1996)
Bossert, I., & Bartha, R. The fate of petroleum in soil ecosystems.(1984)
Boufadel, M. C., Suidan, M. T., & Venosa, A. D. Tracer studies in laboratory beach simulating tidal influences. Journal of Environmental Engineering, 132, 616.(2006)
Bouwer, E. J., & Zehnder, A. J. B. Bioremediation of organic compounds—putting microbial metabolism to work. Trends in biotechnology, 11(8), 360-367.(1993)
Bregnard, T., Haner, A., Hohener, P., & Zeyer, J. Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Applied and environmental microbiology, 63(5), 2077-2081.(1997)
Brodelius, P., & Mosbach, K. Immobilized plant cells. Applied biochemistry and biotechnology, 7(1), 31-34.(1982)
Brodkorb, T. S., & Legge, R. L. Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Applied and environmental microbiology, 58(9), 3117-3121.(1992)
Brunner, W., Sutherland, F. H., & Focht, D. D. Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment and bacterial inoculation. Journal of environmental quality, 14(3), 324-328.(1985)
Burges, A. Micro-organisms in the soil. Micro-organisms in the soil.,(1958)
Bushnell, L., & Haas, H. The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, 41(5), 653-673.(1941)
Callegari, J., Francotte, C., De Wannemaeker, B., Debonne, I., & Simon, J. Physiological behaviour of alginate immobilized cells. Process engineering aspects of immobilized cell systems. The Institute of Chemical Engineer (Great Britain), North Western Branch, 264-271.(1986)
Cameotra, S. S., & Bollag, J. M. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Critical Reviews in Environmental Science and Technology, 33(2), 111-126.(2003)
Capotorti, G., Digianvincenzo, P., Cesti, P., Bernardi, A., & Guglielmetti, G. Pyrene and benzo (a) pyrene metabolism by an Aspergillus terreus strain isolated from a polycylic aromatic hydrocarbons polluted soil. Biodegradation, 15(2), 79-85.(2004)
Cerniglia, C., & Perry, J. Crude oil degradation by microorganisms isolated from the marine environment. Zeitschrift für allgemeine Mikrobiologie, 13(4), 299-306.(1973)
Cerniglia, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3(2), 351-368.(1992)
Chen, W., Bruhlmann, F., Richins, R. D., & Mulchandani, A. Engineering of improved microbes and enzymes for bioremediation. Current opinion in biotechnology, 10(2), 137-141.(1999)
Chibata, I., Tosa, T., & Sato, T. Immobilized aspartase-containing microbial cells: preparation and enzymatic properties. Applied microbiology, 27(5), 878-885.(1974)
Chiou, C. T., Partition and adsorption of organic contaminants in environmental systems: Wiley Online Library.(2002)
Chiou, C. T., Peters, L. J., & Freed, V. H. A physical concept of soil-water equilibria for nonionic organic compounds. Science, 206(4420), 831-832.(1979)
Chiou, C. T., Peters, L. J., & Freed, V. H. Soil-water equilibria for nonionic organic compounds. Science (New York, NY), 213(4508), 684.(1981)
Chiou, C. T., Porter, P. E., & Schmedding, D. W. Partition equilibriums of nonionic organic compounds between soil organic matter and water. Environmental science & technology, 17(4), 227-231.(1983)
Chiou, C. T., Schmedding, D. W., & Manes, M. Partitioning of organic compounds in octanol-water systems. Environmental science & technology, 16(1), 4-10.(1982)
Chiou, C. T., Shoup, T. D., & Porter, P. E. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Organic geochemistry, 8(1), 9-14.(1985)
Church, T. W., & Nakamura, R. T., Cleaning up the mess: Implementation strategies in superfund: Brookings Institution Press.(1993)
Colwell, R. R., Walker, J. D., & Cooney, J. J. Ecological aspects of microbial degradation of petroleum in the marine environment. Critical Reviews in Microbiology, 5(4), 423-445.(1977)
Corseuil, H.X., & Alvarez, P.J.J. Natural bioremediation perspective for BTX-contaminated groundwater in Brazil: effect of ethanol. Water Science & Technology, 34(7), 311-318.(1996)
Coulon, F., McKew, B. A., Osborn, A. M., McGenity, T. J., & Timmis, K. N. Effects of temperature and biostimulation on oil‐degrading microbial communities in temperate estuarine waters. Environmental microbiology, 9(1), 177-186.(2007)
Daisey, J., Hodgson, A., Fisk, W., Mendell, M., & Ten Brinke, J. Volatile organic compounds in twelve California office buildings: classes, concentrations and sources. Atmospheric Environment, 28(22), 3557-3562.(1994)
Davis, A., Ruby, M. V., & Bergstrom, P. D. Bioavailability of arsenic and lead in soils from the Butte, Montana, mining district. Environmental science & technology, 26(3), 461-468.(1992)
de Peinder, P. Characterization and Classification of Crude Oils Using a Combination of Spectroscopy and Chemometrics. thesis of Chemistry, Utrecht University, Netherlands (2009)
Doerffer, J. Types and characteristics of oil. Oil Spill Response in the Marine Environment Pergamon Press, New York, 9-82.(1992)
Dua, M., Singh, A., Sethunathan, N., & Johri, A. K. Biotechnology and bioremediation: successes and limitations. [Review]. Appl Microbiol Biotechnol, 59(2-3), 143-152. doi: 10.1007/s00253-002-1024-6,(2002)
Ehlers, L. J., & Luthy, R. G. Peer Reviewed: Contaminant Bioavailability in Soil and Sediment. Environmental science & technology, 37(15), 295-302.(2003)
Estevez, E., Veiga, M. C., & Kennes, C. Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. Journal of industrial microbiology & biotechnology, 32(1), 33-37.(2005)
Fahl, E., Nohr, D., Hudl, K., Zrenner, E., von Lintig, J., Ghyselinck, N., & Goralczyk, R. Functional Analysis of Mouse Mutants With Impairment of Systemic Retinoid and Carotinoid Pathways. In vivo, B523.(1754)
Ferris, M., Muyzer, G., & Ward, D. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Applied and environmental microbiology, 62(2), 340-346.(1996)
Fine, P., Graber, E., & Yaron, B. Soil interactions with petroleum hydrocarbons: abiotic processes. Soil technology, 10(2), 133-153.(1997)
Fingas, M. F. A literature review of the physics and predictive modelling of oil spill evaporation. Journal of hazardous materials, 42(2), 157-175.(1995)
Fingas, M. F., & Charles, J., The basics of oil spill cleanup: CRC.(2001)
Flathman, P. E., Jerger, D. E., & Exner, J. H., Bioremediation--field experience: CRC.(1994)
Frankenberger Jr, W. The need for a laboratory feasibility study in bioremediation of petroleum hydrocarbons. Hydrocarbon contaminated soils and groundwater. Lewis Pub., Boca Raton, FL, 237-293.(1992)
Fredrickson, J., & Balkwill, D. Sampling and enumeration techniques. Techniques in Microbial Ecology. Oxford University Press, New York, 239-254.(1998)
Fukui, S., & Tanaka, A. Immobilized microbial cells. Annual Reviews in Microbiology, 36(1), 145-172.(1982)
Fusayama, T., Katayori, T., & Nomoto, S. Corrosion of gold and amalgam placed in contact with each other. Journal of Dental Research, 42(5), 1183-1197.(1963)
Gallego, J. L. R., Loredo, J., Llamas, J. F., Vázquez, F., & Sánchez, J. Bioremediation of diesel-contaminated soils: Evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation, 12(5), 325-335.(2001)
Gentry, T., Rensing, C., & Pepper, I. New approaches for bioaugmentation as a remediation technology. Critical Reviews in Environmental Science and Technology, 34(5), 447-494.(2004)
Gibson, S. A., & Suflita, J. M. Anaerobic biodegradation of 2, 4, 5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer: stimulation by short-chain organic acids and alcohols. Applied and environmental microbiology, 56(6), 1825-1832.(1990)
Glazer, A., & Nikaido, H., Microbial biotechnology: fundamentals of applied microbiology New York. Trends in biotechnology, 14(6), 215-215.( (1995)
Grosser, R., Warshawsky, D., & Vestal, J. R. Indigenous and enhanced mineralization of pyrene, benzo [a] pyrene, and carbazole in soils. Applied and environmental microbiology, 57(12), 3462-3469.(1991)
Gundersen, K., Heldal, M., Norland, S., Purdie, D. A., & Knap, A. H. Elemental C, N, and P cell content of individual bacteria collected at the Bermuda Atlantic Time-Series Study (BATS) site. Limnology and oceanography, 1525-1530.(2002)
Hatzinger, P. B., & Alexander, M. Effect of aging of chemicals in soil on their biodegradability and extractability. Environmental science & technology, 29(2), 537-545.(1995)
Hayes, M. E., Nestaas, E., & Hrebenar, K. R. Microbial surfactants. Chemtech, 16(4), 239-243.(1986)
Head, I. M. Bioremediation: towards a credible technology. Microbiology, 144(3), 599-608.(1998)
Head, I. M., Jones, D. M., & Larter, S. R. Biological activity in the deep subsurface and the origin of heavy oil. Nature, 426(6964), 344-352.(2003)
Head, I. M., & Swannell, R. P. J. Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Current opinion in biotechnology, 10(3), 234-239.(1999)
Ho, Y., Jackson, M., Yang, Y., Mueller, J., & Pritchard, P. Characterization of fluoranthene-and pyrene-degrading bacteria isolated from PAH-contaminated soils and sediments. Journal of industrial microbiology & biotechnology, 24(2), 100-112.(2000)
Howard, P., & Howard, D. Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons. Biology and Fertility of soils, 9(4), 306-310.(1990)
Huesemann, M. H. Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environmental science & technology, 29(1), 7-18.(1995)
Huesemann, M. H., Hausmann, T. S., & Fortman, T. J. Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environmental toxicology and chemistry, 22(12), 2853-2860.(2003)
Hutchins, S. R., Sewell, G. W., Kovacs, D. A., & Smith, G. A. Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Environmental science & technology, 25(1), 68-76.(1991)
Huyakorn, P., Wu, Y., & Panday, S. A comprehensive three-dimensional numerical model for predicting the transport and fate of petroleum hydrocarbons in the subsurface. Proc. 1992 Pet. Hydrocarbons Org. Chem. Ground Water: Prevent., Detect., Restor., Houston, Tex, 239.(1992)
Hwu, C. S., & Grotenhuis, T. Assessing bioavailability of petroleum hydrocarbons in contaminated soils and sediments. 第一屆土壤與地下水研討會論文集光碟.(2003)
IUBMB (International Union of Biochemistry and Molecular Biology) Naphthalene metabolism.http://www.chem.qmul.ac.uk/iubmb/enzyme/reaction/misc/naphthalene.html (2010)
Jellali, S., Benremita, H., Muntzer, P., Razakarisoa, O., & Schäfer, G. A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces. Journal of contaminant hydrology, 60(1), 31-53.(2003)
Jordan, R. E., & Payne, J. R. Fate and weathering of petroleum spills in the marine environment: A literature review and synopsis.(1980)
Kane, M., Poulsen, L. K., & Stahl, D. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Applied and environmental microbiology, 59(3), 682-686.(1993)
Keweloh, H., Heipieper, H. J., & Rehm, H. J. Protection of bacteria against toxicity of phenol by immobilization in calcium alginate. Applied microbiology and biotechnology, 31(4), 383-389.(1989)
Kikuchi, A., Kawabuchi, M., Sugihara, M., Sakurai, Y., & Okano, T. Pulsed dextran release from calcium-alginate gel beads. Journal of controlled release, 47(1), 21-29.(1997)
Kim, S. B., Brown, R., Oldfield, C., Gilbert, S. C., & Goodfellow, M. Gordonia desulfuricans sp. nov., a benzothiophene-desulphurizing actinomycete. International Journal of Systematic and Evolutionary Microbiology, 49(4), 1845-1851.(1999)
Kingston, P. F. Long-term environmental impact of oil spills. Spill Science & Technology Bulletin, 7(1-2), 53-61.(2002)
Klein, J., & Wagner, F. Methods for the immobilization of microbial cells. Appl. Biochem. Bioeng, 4, 11-51.(1983)
Knightes, C. D., & Peters, C. A. Aqueous phase biodegradation kinetics of 10 PAH compounds. Environmental engineering science, 20(3), 207-218.(2003)
Lü, J., Li, Z., Hussain, K., & Yang, G. Bioremediation: The New Directions of Oil Spill Cleanup. Middle-East Journal of Scientific Research, 7(5), 738-740.(2011)
Leahy, J. G., & Colwell, R. R. Microbial degradation of hydrocarbons in the environment. Microbiological reviews, 54(3), 305-315.(1990)
Lin, T. C., Pan, P. T., & Cheng, S. S. Ex situ bioremediation of oil-contaminated soil. Journal of hazardous materials, 176(1-3), 27-34.(2010)
Lin, T. C., Young, C. C., Ho, M. J., Yeh, M. S., Chou, C. L., Wei, Y. H., & Chang, J. S. Characterization of floating activity of indigenous diesel-assimilating bacterial isolates. Journal of bioscience and bioengineering, 99(5), 466-472.(2005)
Liu, P. W. G., Whang, L. M., Yang, M. C., & Cheng, S. S. Biodegradation of diesel-contaminated soil: A soil column study. Journal of the Chinese Institute of Chemical Engineers, 39(5), 419-428.(2008)
Liu, S., & Suflita, J. M. Ecology and evolution of microbial populations for bioremediation. Trends in biotechnology, 11(8), 344-352.(1993)
Lu, Z., Deng, Y., Van Nostrand, J. D., He, Z., Voordeckers, J., Zhou, A., Chavarria, K. L. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. The ISME Journal.(2011)
Mahro, B., Schaefer, G., & Kästner, M. Pathways of microbial degradation of polycyclic aromatic hydrocarbons in soil. Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds. RE Hinchee, A. Leeson, L. Semprini, and SK Ong, eds. Lewis Publishers, Boca Raton, FL, USA, 203-217.(1994)
Malarde, D., Wu, Z. Y., Grosso, P., de Bougrenet de la Tocnaye, J., & Le Menn, M. High-resolution and compact refractometer for salinity measurements. Measurement Science and Technology, 20, 015204.(2009)
Manes, M. Activated carbon adsorption fundamentals. Encyclopedia of environmental analysis and remediation, 1, 26-68.(1998)
Mariano, A. P., Tomasella, R. C., De Oliveira, L. M., Contiero, J., & de Angelis, D. F. Biodegradability of diesel and biodiesel blends. African Journal of Biotechnology, 7(9).(2010)
Marschner, B., & Kalbitz, K. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113(3-4), 211-235. (2003)
Mattson, G. MARPOL 73/78 and Annex I: An Assessment of its Effectiveness. Journal of International Wildlife Law and Policy, 9(2), 175-194.(2006)
McCarty, P. L. Bioengineering issues related to in situ remediation of contaminated soils and groundwater. Environmental Biotechnology, 143-162.(1988)
McKenna, E., Microbial metabolism of normal and branched chain alkanes. (1972)
McKew, B. A., Coulon, F., Yakimov, M. M., Denaro, R., Genovese, M., Smith, C. J., McGenity, T. J. Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environmental microbiology, 9(6), 1562-1571.(2007)
Menzie, C. A., Potocki, B. B., & Santodonato, J. Exposure to carcinogenic PAHs in the environment. Environmental science & technology, 26(7), 1278-1284.(1992)
Metting Jr, F. B., Soil microbial ecology: applications in agricultural and environmental management: Marcel Dekker, Inc.,(1992)
Miller, D. D., Schricker, B. R., Rasmussen, R. R., & Van Campen, D. An in vitro method for estimation of iron availability from meals. The American journal of clinical nutrition, 34(10), 2248-2256.(1981)
Miller, J. H., Experiments in molecular genetics (Vol. 60): Cold Spring Harbor Laboratory Cold Spring Harbor, NY:.(1972)
Mishra, S., Sarma, P. M., & Lal, B. Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil‐contaminated soil microcosm. FEMS microbiology letters, 235(2), 323-331.(2004)
Musikavong, C., & Wattanachira, S. Reduction of dissolved organic matter in terms of DOC, UV-254, SUVA and THMFP in industrial estate wastewater treated by stabilization ponds. Environmental monitoring and assessment, 134(1), 489-497.(2007)
Muthukumar, N., Mohanan, S., Maruthamuthu, S., Subramanian, P., Palaniswamy, N., & Raghavan, M. Role of Brucella sp. and Gallionella sp. in oil degradation and corrosion. Electrochemistry communications, 5(5), 421-425.(2003)
Nakao, Y., & Fukuda, H. Production of yeast biomass. United States Patent, 3,909,352, Takeda Chemical Industries, Ltd., Osaka, Japan(1975)
NRC (National Research Council) . Committee on Oil in the Sea., Oil in the sea III: inputs, fates, and effects: National Academies Press.(2003)
Nikolopoulou, M., Pasadakis, N., & Kalogerakis, N. Enhanced bioremediation of crude oil utilizing lipophilic fertilizers. Desalination, 211(1), 286-295.(2007)
Nilsson, K., Birnbaum, S., Flygare, S., Linse, L., Schröder, U., Jeppsson, U., Brodelius, P. A general method for the immobilization of cells with preserved viability. Applied microbiology and biotechnology, 17(6), 319-326.(1983)
Omar, S., & Rehm, H. J. Degradation of n-alkanes by Candida parapsilosis and Penicillium frequentans immobilized on granular clay and aquifer sand. Applied microbiology and biotechnology, 28(1), 103-108.(1988)
Oudot, C., Ternon, J. F., & Lecomte, J. Measurements of atmospheric and oceanic CO2 in the tropical Atlantic: 10 years after the 1982‐1984 FOCAL cruises. Tellus B, 47(1‐2), 70-85.(1995)
Oudot, J. Rates of microbial degradation of petroleum components as determined by computerized capillary gas chromatography and computerized mass spectrometry. Marine Environmental Research, 13(4), 277-302.(1984)
Paul, E., & Clark, F. Soil Microbiology and Biochemistry, Aca. Press, CA. San Diego.(1989)
Pence, H. E., & Williams, A. ChemSpider: an online chemical information resource. Journal of Chemical Education.(2010)
Piccolo, A. Interactions between organic pollutants and humic substances in the environment. Humic substances in the global environment and implications on human health. Elsevier, Amsterdam, 961-980.(1994)
Providenti, M. A., Lee, H., & Trevors, J. T. Selected factors limiting the microbial degradation of recalcitrant compounds. Journal of industrial microbiology & biotechnology, 12(6), 379-395.(1993)
Radermacher, M., Bioremediation of Marine Oil Spills. In T. Ellis (Ed.), (Vol. CE 421/521- Environmental Biotechnology). Iowa State University: Civil and Construction Engineering. (2005)
Ramsay, M. A., Swannell, R. P. J., Shipton, W. A., Duke, N. C., & Hill, R. T. Effect of bioremediation on the microbial community in oiled mangrove sediments. Marine Pollution Bulletin, 41(7-12), 413-419.(2000)
Reid, B. J., Jones, K. C., & Semple, K. T. Bioavailability of persistent organic pollutants in soils and sediments--a perspective on mechanisms, consequences and assessment. Environmental Pollution, 108(1), 103-112.(2000)
Rittmann, B.E., & McCarty, P.L., Environmental biotechnology: McGraw-Hill Boston.(2001)
Ron, E. Z., & Rosenberg, E. Biosurfactants and oil bioremediation. Current opinion in biotechnology, 13(3), 249-252.(2002)
Ross, D., Stroo, H., Bourquin, A., & Sikes, D. Bioremediation of hazardous waste sites in the USA: Case histories. Superfund's Proc. 9th National Conference, Hazardous Materials Control Research lnstitute, Silver Spring, MD. pp.359-397. (1988)
Ruby, M., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Carpenter, M. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental science & technology, 33(21), 3697-3705.(1999)
Rudek, W. Esterase activity in Candida species. Journal of clinical microbiology, 8(6), 756-759.(1978)
Schwarzenbach, R. P., Gschwend, P. M., & D.M., l. Environmental Organic Chemistry: New York: John Wiley & Sons. (1993)
Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. Peer Reviewed: Defining Bioavailability and Bioaccessibility of Contaminated Soil and Sediment is Complicated. Environmental science & technology, 38(12), 228-231.(2004)
Semple, K. T., Morriss, A., & Paton, G. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European Journal of Soil Science, 54(4), 809-818.(2003)
Semprini, L., Hopkins, G. D., McCarty, P. L., & Roberts, P. V. In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions. Environmental science & technology, 26(12), 2454-2461.(1992)
Shishido, M., & Toda, M. Simulation of oxygen concentration profile in calcium alginate gel beads entrapping microbes during biological phenol degradation. Chemical engineering science, 51(6), 859-872.(1996)
Small, D. A., Chang, W., Toghrol, F., & Bentley, W. E. Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa. Applied microbiology and biotechnology, 74(1), 176-185.(2007)
Suni, S., Koskinen, K., Kauppi, S., Hannula, E., Ryynänen, T., Aalto, A., Romantschuk, M. Removal by sorption and in situ biodegradation of oil spills limits damage to marine biota: a laboratory simulation. AMBIO: A Journal of the Human Environment, 36(2), 173-179.(2007)
SVRCEK, W., & MEHROTRA, A. Gas solubility, viscosity and density measurements for Athabasca bitumen. Journal of Canadian Petroleum Technology, 21(4).(1982)
Swannell, R., Lee, K., & McDonagh, M. Field evaluations of marine oil spill bioremediation. Microbiology and Molecular Biology Reviews, 60(2), 342.(1996)
Tissot, B., & Welte, D., Petroleum formation and occurrence: 1984.,(1988)
Trevors, J., Van Elsas, J., Lee, H., & Van Overbeek, L. Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb Releases, 1, 61-69.(1992)
Troquet, J., Larroche, C., & Dussap, C. G. Evidence for the occurrence of an oxygen limitation during soil bioremediation by solid-state fermentation. Biochemical Engineering Journal, 13(2-3), 103-112.(2003)
Tsen, J. H., Lin, Y. P., & An-Erl King, V. Fermentation of banana media by using κ-carrageenan immobilized Lactobacillus acidophilus. International journal of food microbiology, 91(2), 215-220.(2004)
Tyagi, M., Da Fonseca, M. M. R., & De Carvalho, C. C. C. R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231-241.(2011)
USEPA. (1999). Treatment Technologies for Site Cleanup Annual Status Report: EPA-542-R 99-001. Washington, DC: Office of Solid Waste and Emergency Responses, U. S. Environmental Protection Agency.
USEPA. (2010). Superfund remedies report. 13th editon: EPA542-R-10-004, Washington, DC: Office of Superfund Remediation and Technology Innovation , U. S. Environmental Protection Agency.
Venkateswaran, K., & Harayama, S. Sequential enrichment of microbial populations exhibiting enhanced biodegradation of crude oil. Canadian Journal of Microbiology, 41(9), 767.(1995)
Vidali, M. Bioremediation. An overview. Pure and Applied Chemistry, 73(7), 1163-1172.(2001)
Von Der Weid, I., Marques, J. M., Cunha, C. D., Lippi, R. K., Dos Santos, S. C. C., Rosado, A. S., Seldin, L. Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Systematic and applied microbiology, 30(4), 331-339.(2007)
Von Wedel, R., Mosquera, J., Goldsmith, C. D., Hater, G., & Wong, A. Bacterial biodegradation of petroleum hydrocarbons in groundwater: in situ augmented bioreclamation with enrichment isolates in California. Water Science and Technology WSTED 4, 20(11/12).(1988)
Watanabe, K. Microorganisms relevant to bioremediation. Current opinion in biotechnology, 12(3), 237-241.(2001)
Webb, C. C., Bioremediation of Marine Oil Spills. In T. Ellis (Ed.), (Vol. CE 421/521- Environmental Biotechnology). Iowa State University: Civil and Construction Engineering. (2005)
White, T., Bruns, T., Lee, S., & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols A guide to methods and applications, 315-322.(1990)
Winter, J. D., Myers, J. E., & Deever, W. R. Process for treating oily sludge: US Patent 5,207,912, Taxaco Inc., White Plants, N.Y.. (1993)
Wongsa, P., Tanaka, M., Ueno, A., Hasanuzzaman, M., Yumoto, I., & Okuyama, H. Isolation and characterization of novel strains of Pseudomonas aeruginosa and Serratia marcescens possessing high efficiency to degrade gasoline, kerosene, diesel oil, and lubricating oil. Current microbiology, 49(6), 415-422.(2004)
Xu, H. S., Roberts, N., Singleton, F., Attwell, R., Grimes, D., & Colwell, R. Survival and viability of nonculturableEscherichia coli andVibrio cholerae in the estuarine and marine environment. Microbial ecology, 8(4), 313-323.(1982)
Yang, L., Lai, C. T., & Shieh, W. K. Biodegradation of dispersed diesel fuel under high salinity conditions. Water Research, 34(13), 3303-3314.(2000)
Yuste, L., Corbella, M. E., Turiégano, M. J., Karlson, U., Puyet, A., & Rojo, F. Characterization of bacterial strains able to grow on high molecular mass residues from crude oil processing. FEMS microbiology ecology, 32(1), 69-75.(2000)
Zinjarde, S., & Pant, A. Hydrocarbon degraders from tropical marine environments. Marine Pollution Bulletin, 44(2), 118-121.(2002)
Zwietering, M., Jongenburger, I., Rombouts, F., & Van't Riet, K. Modeling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881.(1990)
陳國誠,微生物酵素工程學,藝軒出版社。(1992)
中油公司訓練所,石油產品及其應用(上、下冊),蘭潭彩色印刷股份有限公司(1996)
陳國誠,生物固定化技術與產業應用,茂昌圖書有限公司。(2000)
邱文彥,海洋污染防治,海岸管理理論與實務,第263 頁。(2000)
林世昌,民間溢油處理機構之角色與功能-國外案例與我國基本架構之研究,國立中山大學海洋環境與工程學系碩士論文。(2003)
周建良,醣脂類生物介面活性劑rhamnolipid發酵基質最適化及生產策略之研究,國立成功大學化學工程學系碩士論文。(2005)
潘祈良,應用細胞固定化技術於生物滲透性反應牆之地下水中柴油整治研究,國立成功大學環境工程學系碩士論文。(2009)
吳柏穎,土壤有機質對生物降解石油碳氫化合物之影響,國立成功大學環境工程學系碩士論文。(2010)
環保署土壤及地下水污染整治網,http://sgw.epa.gov.tw/public/index.asp 

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top