跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/30 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮育澤
研究生(外文):Yu-TzeFeng
論文名稱:TFT-LCD製程廢水回收系統薄膜阻塞問題研究
論文名稱(外文):Study on the cause of membrane fouling in TFT-LCD wastewater reclamation system
指導教授:葉宣顯
指導教授(外文):Hsuan-Hsien Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:103
中文關鍵詞:逆滲透病理解剖高校能粒徑排除層析儀螢光激發/發散陣列光譜儀阻塞控制
外文關鍵詞:Reverse osmosisAutopsyHPSECEEMFouling control
相關次數:
  • 被引用被引用:7
  • 點閱點閱:471
  • 評分評分:
  • 下載下載:110
  • 收藏至我的研究室書目清單書目收藏:0
本研究為探討液晶螢幕製程廢水回收系統中RO薄膜阻塞原因。薄膜程序操作上最大的問題為阻塞,阻塞會引起過膜壓力升高,造成濾液通量下降,薄膜使用壽命降低等缺點,所以阻塞現象之控制為薄膜程序成敗之關鍵所在。而阻塞物的鑑定及阻塞機制之瞭解為阻塞控制的第一步,如此才能經由處理程序之調整,達到控制阻塞的目的。

通常阻塞物來自於薄膜系統進流水的某些物質於過濾時沉積或吸附於膜表面或孔洞內,因此研究首先分析進流水及系統各單元出水的水質特性,了解RO進水的水質狀況,之後將廢棄的匣式過濾器與RO膜管進行病理解剖,鑑定阻塞物並與系統的水質特性比較,了解阻塞物的成分與來源。

水質分析結果顯示原水所含主要物質為有機物,薄膜病理解剖也顯示阻塞物主要以有機物為主,以高校能粒徑排除層析儀(high performance size exclusion chromatography, HPSEC)及螢光激發/發散陣列光譜儀(excitation/emission matrix spectofluorometer, EEM)分析有機物特性,發現造成主要阻塞的有機物來自彩色濾光片製程的廢水。

研究也發現水回收處理流程之生物單元會使阻塞更嚴重,推測係因系統進流水中之有機物經過生物處理後,小分子量有機物被微生物代謝產生較大分子之溶解性微生物代謝物,使阻塞更嚴重。經調整處理程序,取消生物處理單元並新增活性碳濾床,發現可有效減緩RO系統的阻塞,與修改程序前系統相比,修改後的系統RO藥洗頻率從原本一個禮拜一次延長到六個禮拜一次、回收率提高且藥洗回復通量情況較好,這些皆使系統更有效率。

This research is focus on the membrane fouling phenomena in TFT-LCD wastewater reclamation system. Membrane process has become more and more popular in water treatment. However, the major problem of membrane process is fouling. Fouling will increase transmembrane pressure, cause flux decline and shorten membrane life. Therefore, fouling control is essential for the success of membrane process. The first step of fouling control is identification of foulant and the understanding of fouling mechanism. After know what is the foulant and fouling phenomena, the operational parameters of the process can be adjusted for the purpose of control fouling.

Usually, the foulants come from source water and their properties may be changed during the pretreatment process. Therefore, in this research, firstly, the water quality characteristic of the source water and waters from various units of the treatment process train were analyzed. Secondly, autopsies of fouled membranes, both pretreatment cartridge filter and RO, were carried out to identify the foulant. Then both results were compared, and the identity and source of the foulants speculated.

Based on the results from both water quality analysis and autopsy of fouled membrane, the major constituents of the foulants are considered to be organics. Further, based on the molecular characteristics of foulants, obtained from high performance size exclusion chromatography(HPSEC) and excitation/emission matrix spectofluorometer(EEM), the organic foulants were speculated to be mainly come from color filter manufacture process. The result also show that the biopolisher unit in the water treatment process may make the fouling phenomena even worse, as the low molecular weight organic were metabolized and high molecular weight soluble microbial product(SMP) released into the effluent of the biopolisher. The SMP may cause serious fouling in the following membrane units. This speculation was proved by the improvement in RO fouling control, such as lower chemical cleaning frequency and higher recovery, when the treatment process train was adjusted by deleting the biopolisher and adding activated carbon filter.

摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 XI
表目錄 XV
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 TFT-LCD製程與廢水特性簡介 3
2-1-1 產業現況 3
2-1-2 薄膜液晶顯示器顯像原理與製程 3
2-1-3 TFT-LCD製程與常用原料 5
2-1-4 廢水分類 10
2-2 薄膜處理程序 13
2-2-1薄膜種類 13
2-2-2 薄膜的過濾方式 16
2-3 RO系統介紹 17
2-3-1 RO的設計參數 18
2-3-2 濃度極化(concentration polarization) 19
2-3-3 RO薄膜材質 20
2-3-4 RO膜管與系統設計 21
2-4薄膜阻塞與病理解剖 23
2-4-1薄膜阻塞 23
2-4-2 阻塞指標 (Fouling index) 26
2-4-3 薄膜病理解剖 28
2-5 薄膜阻塞控制方法 31
2-5-1 進流水之前處理 31
2-5-2 適時的清洗薄膜 34
第三章 研究程序方法及材料 35
3-1研究對象 35
3-2研究程序規劃 38
3-3 研究方法 39
3-3-1有機物特性分析 40
3-3-2 一般水質參數 46
3-3-3 匣式過濾器及RO膜病理解剖 49
第四章 結果與討論 53
4-1 原水特性與系統分析結果 53
4-1-1水質特性 53
4-1-2 有機物特性-EEM、HPSEC 56
4-1-3流程調整後之有機物特性-HPSEC(調整螢光激發/散射波長) 64
4-2 阻塞物分析結果 73
4-2-1 阻塞物表面觀察與元素分析 73
4-2-2 阻塞物有機物特性分析-EEM、HPSEC 79
4-2-3 FTIR分析結果討論 84
4-3 系統流程修改的影響 88
第五章 結論與建議 94
5-1 結論 94
5-2 建議 95
參考文獻 96
附錄 101



廖威智, 2003. 薄膜電晶體液晶顯示器(TFT-LCD)製程有機廢水處理與回收再利用之研究. 碩士學位論文, 國立交通大學環境工程所
鄭華安, 郭崇文, 陳郁良, 林永壽, 2007. 南科台南園區光電產業廢水特性研究暨管制策略研訂, 南部科學工業園區管理局
龍柏華, 2003. “濕蝕刻製程介紹暨機台原理簡介. 光連:光電產業與技術情報月刊(48期)
吳文定, 蔡春進, 2007. 某彩色濾光片廠的潔淨室內揮發性有機氣體濃度分佈研究. 工業安全衛生月刊(2007.10)
陳益滽、張翼、詹文碩、陽永明、戴寶通,2005,「廢溶劑回收系統於TFT-LCD製造廠之應用」,奈米通訊,第12卷,第2期,第52-57頁
張永信. (2008). 薄膜程序用於工業區廢水回收之研究. 碩士學位論文, 國立成功大學環境工程學系
林育彰. (2009). 藻體胞外有機物特性之研究. 碩士學位論文, 國立成功大學環境工程學系

Al-Amoudi, A. and R. W. Lovitt (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science 303(1-2): 4-28.
Amjad, Z. (1993). Reverse osmosis : membrane technology, water chemistry & industrial applications / edited by Zahid Amjad. New York :, Van Nostrand Reinhold.
Ang, W. S. and M. Elimelech (2007). Protein (BSA) fouling of reverse osmosis membranes: Implications for wastewater reclamation. Journal of Membrane Science 296(1–2): 83-92.
Ang, W. S., S. Lee and M. Elimelech (2006). Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. Journal of Membrane Science 272(1-2): 198-210.
Ang, W. S., A. Tiraferri, K. L. Chen and M. Elimelech (2011). Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. Journal of Membrane Science 376(1-2): 196-206.
AWWA. (2003). Membrane Processes, American Water Works Association.
Bartels, C. R., M. Wilf, K. Andes and J. Iong (2005). Design considerations for wastewater treatment by reverse osmosis. Water Science and Technology 51(6-7): 473-482.
Bonnelye, V., M. A. Sanz, J.-P. Durand, L. Plasse, F. Gueguen and P. Mazounie (2004). Reverse osmosis on open intake seawater: pre-treatment strategy. Desalination 167(0): 191-200.
Chen, W., P. Westerhoff, J. A. Leenheer and K. Booksh (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology 37(24): 5701-5710.
Cheryan, M. (1998). Ultrafiltration and microfiltration handbook. Lancaster, Pennsylvania, Technomic Publishing.
Cho, J., G. Amy, J. Pellegrino and Y. Yoon (1998). Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization. Desalination 118(1-3): 101-108.
Chon, K., S. J. Kim, J. Moon and J. Cho (2012). Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: An autopsy study of a pilot plant. Water Research 46(6): 1803-1816.
de Roever, E. W. F. and I. H. Huisman (2007). Microscopy as a tool for analysis of membrane failure and fouling. Desalination 207(1-3): 35-44.
Fritzmann, C., J. Löwenberg, T. Wintgens and T. Melin (2007). State-of-the-art of reverse osmosis desalination. Desalination 216(1-3): 1-76.
Greenlee, L. F., D. F. Lawler, B. D. Freeman, B. Marrot and P. Moulin (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research 43(9): 2317-2348.
Gur-Reznik, S., I. Katz and C. G. Dosoretz (2008). Removal of dissolved organic matter by granular-activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents. Water Research 42(6–7): 1595-1605.
Hatt, J. W., E. Germain and S. J. Judd (2011). Precoagulation-microfiltration for wastewater reuse. Water Research 45(19): 6471-6478.
Heiri, O., A. F. Lotter and G. Lemcke (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25(1): 101-110.
Her, N., G. Amy, H. R. Park and M. Song (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research 38(6): 1427-1438.
Herzberg, M. and M. Elimelech (2007). Biofouling of reverse osmosis membranes: Role of biofilm-enhanced osmotic pressure. Journal of Membrane Science 295(1-2): 11-20.
Herzberg, M., S. Kang and M. Elimelech (2009). Role of Extracellular Polymeric Substances (EPS) in Biofouling of Reverse Osmosis Membranes. Environmental Science & Technology 43(12): 4393-4398.
Hoek, E. M. V. and M. Elimelech (2003). Cake-Enhanced Concentration Polarization:  A New Fouling Mechanism for Salt-Rejecting Membranes. Environmental Science & Technology 37(24): 5581-5588.
Howe, K. J., A. Marwah, K.-P. Chiu and S. S. Adham (2006). Effect of Coagulation on the Size of MF and UF Membrane Foulants. Environmental Science & Technology 40(24): 7908-7913.
Huang, C., J. L. Lin, W. S. Lee, J. R. Pan and B. Zhao (2011). Effect of coagulation mechanism on membrane permeability in coagulation-assisted microfiltration for spent filter backwash water recycling. Colloids and Surfaces A: Physicochemical and Engineering Aspects 378(1–3): 72-78.
Huang, H., K. Schwab and J. G. Jacangelo (2009). Pretreatment for Low Pressure Membranes in Water Treatment: A Review. Environmental Science & Technology 43(9): 3011-3019.
Jarusutthirak, C. and G. Amy (2007). Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM). Water Research 41(12): 2787-2793.
Kang, G.-d. and Y.-m. Cao (2012). Development of antifouling reverse osmosis membranes for water treatment: A review. Water Research 46(3): 584-600.
Kimura, K., T. Maeda, H. Yamamura and Y. Watanabe (2008). Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water. Journal of Membrane Science 320(1-2): 356-362.
Kremen, S. S. and M. Tanner (1998). Silt density indices (SDI), percent plugging factor (%PF): their relation to actual foulant deposition. Desalination 119(1–3): 259-262.
Kruger, N. J. (2002). The Bradford Method for Protein Quantitation-The Protein Protocols Handbook. J. M. Walker, Humana Press: 15-21.
Laine, J. M. and C. Anselme (1995). Ultrafiltration Technology Status Overview in Municipal Drinking Water. 20th Congress IWSA Conference, Durban, South Africa.
Lee, B.-B., K.-H. Choo, D. Chang and S.-J. Choi (2009). Optimizing the coagulant dose to control membrane fouling in combined coagulation/ultrafiltration systems for textile wastewater reclamation. Chemical Engineering Journal 155(1-2): 101-107.
Lee, S. and M. Elimelech (2006). Relating Organic Fouling of Reverse Osmosis Membranes to Intermolecular Adhesion Forces. Environmental Science & Technology 40(3): 980-987.
Li, Q. and M. Elimelech (2006). Synergistic effects in combined fouling of a loose nanofiltration membrane by colloidal materials and natural organic matter. Journal of Membrane Science 278(1–2): 72-82.
Lu, N. C. and J. C. Liu (2010). Removal of phosphate and fluoride from wastewater by a hybrid precipitation–microfiltration process. Separation and Purification Technology 74(3): 329-335.
MWH (2005). Water treatment principles and design. Hoboken, New Jersey, John Wiley & Sons
Osmonics, G. (1996). The Filtration Spectrum. Minnesota, USA, GE Osmonics.
Pavia, D. L. (2009). Introduction to Spectroscopy, Brooks/Cole, Cengage Learning.
Qin, J. J., M. N. Wai, M. H. Oo, K. A. Kekre and H. Seah (2009). Impact of anti-scalant on fouling of reverse osmosis membranes in reclamation of secondary effluent. Water Science and Technology 60(11): 2767-2774.
Schneider, R. P., L. M. Ferreira, P. Binder and J. R. Ramos (2005). Analysis of foulant layer in all elements of an RO train. Journal of Membrane Science 261(1–2): 152-162.
Tang, C. Y., T. H. Chong and A. G. Fane (2011). Colloidal interactions and fouling of NF and RO membranes: A review. Advances in Colloid and Interface Science 164(1-2): 126-143.
Tran, T., B. Bolto, S. Gray, M. Hoang and E. Ostarcevic (2007). An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant. Water Research 41(17): 3915-3923.
Vrouwenvelder, J. S., J. W. N. M. Kappelhof, S. G. J. Heijrnan, J. C. Schippers and D. van der Kooija (2003). Tools for fouling diagnosis of NF and RO membranes and assessment of the fouling potential of feed water. Desalination 157(1-3): 361-365.
Vrouwenvelder, J. S., J. Kruithof and M. Van Loosdrecht (2011). Biofouling of Spiral Wound Membrane Systems, Iwa Publishing.
Vrouwenvelder, J. S., S. A. Manolarakis, J. P. van der Hoek, J. A. M. van Paassen, W. G. J. van der Meer, J. M. C. van Agtmaal, H. D. M. Prummel, J. C. Kruithof and M. C. M. van Loosdrecht (2008). Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. Water Research 42(19): 4856-4868.
Vrouwenvelder, J. S., S. A. Manolarakis, H. R. Veenendaal and D. van der Kooij (2000). Biofouling potential of chemicals used for scale control in RO and NF membranes. Desalination 132(1–3): 1-10.
Vrouwenvelder, J. S. and D. van der Kooij (2003). Diagnosis of fouling problems of NF and RO membrane installations by a quick scan. Desalination 153(1–3): 121-124.
Vrouwenvelder, J. S., M. C. M. van Loosdrecht and J. C. Kruithof (2011). Early warning of biofouling in spiral wound nanofiltration and reverse osmosis membranes. Desalination 265(1-3): 206-212.
Xu, P., C. Bellona and J. E. Drewes (2010). Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilot-scale investigations. Journal of Membrane Science 353(1-2): 111-121.
Yang, H. L., C. Huang and J. R. Pan (2008). Characteristics of RO foulants in a brackish water desalination plant. Desalination 220(1-3): 353-358.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top