跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳玫瑾
研究生(外文):Mei-ChinChen
論文名稱:以S摻雜TiO2光觸媒在可見光下處理二甲基硫之研究
論文名稱(外文):Photocatalytic Degradation of Dimethyl Sulfide Under Visible Light with S-doped TiO2 Photocatalysts
指導教授:朱信朱信引用關係
指導教授(外文):Hsin Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:140
中文關鍵詞:二甲基硫光觸媒可見光光催化S摻雜二氧化鈦
外文關鍵詞:Dimethyl sulfidephotocatalystVisible light photocatalysisS-doped TiO2
相關次數:
  • 被引用被引用:2
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
二甲基硫(Dimethyl sulfide, DMS)主要源於大自然及人為活動厭氧分解過程,因常見於光電廠之去光阻液二甲基亞碸分解,而影響產品良率,且其具極低臭味閾值和特異性臭味,被環保署列為惡臭物質,如何有效去除二甲基硫因此備受重視。目前用於控制VOC的方法有焚化、生物處理及光催化等,前兩項操作空間需求大,但一般污染發生地受限於用地面積之考量,通常採用短時間高效率之高級處理程序作為處理方式,而光催化法則具有氧化能力強、處理效率高及操作程序簡單等優勢。
本研究利用溶膠凝膠法自行製備TiO2光觸媒,並藉由摻雜S期望提高TiO2光觸媒在可見光下降解二甲基硫的效率。首先以連續式實驗探討不同摻雜比例之光觸媒光催化活性,同時利用各種輔助實驗,如XRD、UV-Visible、XPS、BET等儀器分析光觸媒晶相變化、吸光度、化學鍵結、粒徑分佈等物化特性,藉以探討其與可見光降解二甲基硫效率之相關性。
結果顯示,鍛燒溫度為500°C時光觸媒晶相已完全轉換為活性較佳的anatase晶相;經S摻雜之TiO2粒徑明顯變小,而比表面積有大幅增加的趨勢;摻雜之S是以S6+型態存在,鍵結方式為Ti-O-S。於LED燈照射下,純TiO2光觸媒對二甲基硫幾乎無光降解效率,而S/TiO2其轉化率皆大幅提升,日光燈照射下亦有相似結果,故以成本考量選用S/Ti = 5 mol%光觸媒作為後續研究。從操作參數實驗中知隨進流濃度(55、75和100 ppm)及相對濕度(10%、40%、80%)提高,轉化率隨之下降;隨進流溫度(25°C、35°C及45°C)上升二甲基硫之轉化率則會增加。此外,以Langmuir-Hinshelwood model模擬動力,結果顯示二甲基硫吸附常數Ki大於H2O吸附常數Koi,表示二甲基硫吸附能力大於H2O吸附能力;反應速率常數k隨溫度上升而提高,顯示整體反應受表面反應及吸附綜合影響,光催化反應之活化能為29.9 kJ/mol。

Dimethyl sulfide(DMS) is one of the sulfur-containing volatile organic compounds, and its main sources which are divided to nature and anthropogenic emissions. DMS is from the anaerobic decay processes of sulfur-containing organic compounds and is usually detected in paper pulping and wastewater treatment processes. DMS has a specific smell like rotten vegetables taste and very low odor threshold value and irritates the eyes, skin, and respiratory system.
In this study, TiO2 and sulfur doped TiO2 were prepared by sol-gel method. The photocatalytic decomposition rate of dimethyl sulfide under visible light was expected to increase by doping sulfur. To analyze the physical and chemical characteristics of photocatalysts we used XRD, UV-Visible spectroscopy, and XPS, respectively. Therefore, we can know the crystalline phase, particle size, absorbance spectrum, band gap, and chemical bonding, which will help to understand the reaction of dimethyl sulfide decomposition rate.
By calcined at 500°C, the results of XRD of the photocatalysts show that doped S can reduce the crystalline size and all photocatalysts are anatase phase structure. The XPS results of S/Ti= 5 mol% photocatalyst, S exists as S6+ on the surface crystal lattices. The activity of photocatalysts was determinated by the measurement of DMS degradation under visible light. According to the result of activity test, we chose S/TiO2= 5 mol% photocatalyst for further studies. With the operation parameter tests, the results show that the lower concentration and relative humidity, the higher conversions are. However, lower temperature would reduce conversion. By fitting with a Langmuir-Hinshelwood model, the result shows that Ki is larger than Koi, and it also represents that adsorption ability of DMS is large than H2O. The k rises as the temperature growing. The photocatalytic active energy is 29.9 kJ/mol.

摘要 I
Abstract III
致謝 V
目錄 VII
表目錄 XI
圖目錄 XIII
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 SVOCs 4
2-1.1 SVOCs之定義及來源 4
2-1.2 SVOCs特性及影響 5
2-2 二甲基硫之特性與處理方法 5
2-2.1 二甲基硫來源特性 5
2-2.2 二甲基硫之處理方法 7
2-3 光催化反應 16
2-3.1 光觸媒 16
2-3.2 光催化原理 18
2-3.3 能隙(Band gap) 23
2-4 二氧化鈦摻雜 25
2-4.1 添加金屬原子 27
2-4.2 添加金屬離子 28
2-4.3 添加非金屬元素 31
2-4.4 表面敏化 35
2-4.5 加入其他種半導體 36
2-5 光觸媒製備 38
2-5.1 含浸法(Impregnation) 38
2-5.2 溶膠-凝膠法(Sol-gel) 38
2-5.3 物理氣相沉積法(Physical Vapor Deposition) 40
2-5.4 化學氣相沉積法(Chemical Vapor Deposition, CVD) 41
2-5.5 真空濺鍍法(Sputtering) 41
2-5.6 綜合比較 43
2-6 二氧化鈦光觸媒塗佈方法 44
2-6.1 浸漬塗佈法 44
2-6.2 旋轉塗佈法 45
2-7 光觸媒降解SVOCs之反應動力 47
2-7.1 柱流式反應器基礎理論 48
2-7.2 微分型反應器 51
2-7.3 觸媒異相反應模式 52
2-8 光降解之副產物 58
第三章 研究方法與實驗設備 60
3-1 研究方法 60
3-2 實驗材料與設備 62
3-2.1 試藥與氣體 62
3-2.2 實驗系統裝置 63
3-2.3 分析儀器原理與操作條件 70
3-3 實驗方法與步驟 76
3-3.1 光觸媒製備 76
3-3.2 光觸媒膜製備 78
3-3.3 檢量線製作 78
3-3.4 二甲基硫氣體模擬系統穩定測試 80
3-3.5 光催化背景實驗 81
第四章 結果與討論 82
4-1 光觸媒之特性分析 82
4-1.1 熱重分析 82
4-1.2 X-射線繞射分析 86
4-1.3 UV-Visible分析 92
4-1.4 FT-IR分析 94
4-1.5 XPS分析 96
4-1.6 BET分析 100
4-2 以不同S摻雜比例光觸媒降解二甲基硫之實驗 103
4-3 二甲基硫操作參數之探討 106
4-3.1 進流濃度對光觸媒降解二甲基硫效率之探討 106
4-3.2 相對溼度對光觸媒降解二甲基硫效率之探討 108
4-3.3 溫度對光觸媒降解二甲基硫效率之探討 110
4-4 光觸媒之動力分析 113
4-4.1 Langmuir-Hinshelwood Model 113
4-4.2 Mars & van Krevelen Model 120
4-5 光降解之副產物分析 124
第五章 結論與建議 125
5-1 結論 125
5-2 建議 127
參考文獻 128
附錄 139


Alberici, R.M., Jardim, W.E., 1997. Photocatalytic Destruction of VOCs in The Gas-Phase Using Titanium Dioxide. Appl. Catal. B-Environ. 14, 55-68.
Ang, T., Law, J., Han, Y.-F., 2010. Preparation, Characterization of Sulfur-Doped Nanosized TiO2 and Photocatalytic Degradation of Methylene Blue Under Visible Light. Catalysis Letters 139, 77-84.
Anpo, M., Shima, T., Kodama, S., Kubokawa, Y., 1987. Photocatalytic Hydrogenation of CH3CCH with H2O on Small-Particle TiO2 - Size Quantization Effects and Reaction Intermediates J. Phys. Chem. 91, 4305-4310.
Ao, C.H., Lee, S.C., Yu, J.Z., Xu, J.H., 2004. Photodegradation of Formaldehyde by Photocatalyst TiO2: Effects on the Presences of NO, SO2 and VOCs. Appl. Catal. B-Environ. 54, 41-50.
Bandara, J., Mielczarski, J.A., Lopez, A., Kiwi, J., 2001. 2. Sensitized Degradation of Chlorophenols on Iron Oxides Induced by Visible Light - Comparison with Titanium Oxide. Appl. Catal. B-Environ. 34, 321-333.
Bayati, M.R., Moshfegh, A.Z., Golestani-Fard, F., 2010. Micro-Arc Oxidized S-TiO2 Nanoporous Layers: Cationic or Anionic Doping? Materials Letters 64, 2215-2218.
Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X., Casado, J., 1998. Aniline Mineralization by AOP's: Anodic Oxidation, Photocatalysis, Electro-Fenton and Photoelectro-Fenton Processes. Appl. Catal. B-Environ. 16, 31-42.
Cantau, C., Larribau, S., Pigot, T., Simon, M., Maurette, M.T., Lacombe, S., 2007. Oxidation of Nauseous Sulfur Compounds by Photocatalysis or Photosensitization. Catal. Today 122, 27-38.
Carp, O., Huisman, C.L., Reller, A., 2004. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 32, 33-177.
Chang, C.C., Weng, H.S., 1993. Deep Oxidation of Toluene on Perovskite Catalyst. Industrial & Engineering Chemistry Research 32, 2930-2933.
Chatterjee, D., Dasgupta, S., Rao, N.N., 2006. Visible Light Assisted Photodegradation of Halocarbons on the Dye Modified TiO2 Surface Using Visible Light. Sol. Energy Mater. Sol. Cells 90, 1013-1020.
Choi, W.Y., Termin, A., Hoffmann, M.R., 1994. Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles. Angew. Chem.-Int. Edit. Engl. 33, 1091-1092.
Crişan, M., Brăileanu, A., Răileanu, M., Zaharescu, M., Crişan, D., Drăgan, N., Anastasescu, M., Ianculescu, A., Niţoi, I., Marinescu, V.E., Hodorogea, S.M., 2008. Sol–Gel S-Doped TiO2 Materials for Environmental Protection. Journal of Non-Crystalline Solids 354, 705-711.
de Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., van den Heuvel, A., Osinga, T.J., 1966. Thet-Curve of Multimolecular N2-Adsorption. J. Colloid Interface Sci. 21, 405-414.
Dozzi, M.V., Livraghi, S., Giamello, E., Selli, E., 2011. Photocatalytic activity of S- and F-doped TiO2 in formic acid mineralization. Photochemical & Photobiological Sciences 10, 343-349.
Duminica, R.D., Maury, F., Hausbrand, R., 2007. N-Doped TiO2 Coatings Grown by Atmospheric Pressure MOCVD for Visible Light-induced Photocatalytic Activity. Surf. Coat. Technol. 201, 9349-9353.
Fox, M.A., Dulay, M.T., 1993. Heterogeneous Photocatalysis. Chem. Rev. 93, 341-357.
Fu, X.Z., Clark, L.A., Zeltner, W.A., Anderson, M.A., 1996. Effects of Reaction Temperature and Water Vapor Content on the Heterogeneous Photocatalytic Oxidation of Ethylene. J. Photochem. Photobiol. A-Chem. 97, 181-186.
Gratzel, M., 2001. Photoelectrochemical Cells. Nature 414, 338-344.
Hamal, D.B., Klabunde, K.J., 2007. Synthesis, Characterization, and Visible Light Activity of New Nanoparticle Photocatalysts Based on Silver, Carbon, and Sulfur-doped TiO2. J. Colloid Interface Sci. 311, 514-522.
Harizanov, O., Ivanova, T., Harizanova, A., 2001. Study of Sol–Gel TiO2 and TiO2–MnO Obtained From a Peptized Solution. Materials Letters 49, 165-171.
He, C., Yu, Y., Zhou, C.H., Hu, X.F., 2002. Structure and Photocatalytic Activities of Ag/TiO2 Thin Films. J. Inorg. Mater. 17, 1025-1033.
Higashimoto, S., Tanihata, W., Nakagawa, Y., Azuma, M., Ohue, H., Sakata, Y., 2008. Effective Photocatalytic Decomposition of VOC Under Visible-Light Irradiation on N-Doped TiO2 Modified by Vanadium Species. Appl. Catal. A-Gen. 340, 98-104.
Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W., 1995. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95, 69-96.
Hong, S.-S., Lee, M.S., Park, S.S., Lee, G.-D., 2003. Synthesis of Nanosized TiO2/SiO2 Particles in the Microemulsion and Their Photocatalytic Activity on the Decomposition of p-Nitrophenol. Catal. Today 87, 99-105.
Hung, C.H., Marinas, B.J., 1997. Role of Water in the Photocatalytic Degradation of Trichloroethylene Vapor on TiO2 Films. Environ. Sci. Technol. 31, 1440-1445.
Hung, W.-C., Fu, S.-H., Tseng, J.-J., Chu, H., Ko, T.-H., 2007. Study on Photocatalytic Degradation of Gaseous Dichloromethane Using Pure and Iron Ion-doped TiO2 Prepared by the Sol–Gel Method. Chemosphere 66, 2142-2151.
Hussain, S.T., Khan, K., Hussain, R., 2009. Size Control Synthesis of Sulfur Doped Titanium Dioxide (Anatase) Nanoparticles, Its Optical Property and Its Photo Catalytic Reactivity for CO2 + H2O Conversion and Phenol Degradation. Journal of Natural Gas Chemistry 18, 383-391.
Jo, W.K., Kim, J.T., 2010. Decomposition of Gas-Phase Aromatic Hydrocarbons by Applying an Annular-Type Reactor Coated with Sulfur-Doped Photocatalyst Under Visible-Light Irradiation. J. Chem. Technol. Biotechnol. 85, 485-492.
Jo, W.K., Yang, C.H., 2010. Visible-Light-Induced Photocatalysis of Low-Level Methyl-Tertiary Butyl Ether (MTBE) and Trichloroethylene (TCE) Using Element-doped Titanium Dioxide. Build. Environ. 45, 819-824.
Kanai, N., Nuida, T., Ueta, K., Hashimoto, K., Watanabe, T., Ohsaki, H., 2004. Photocatalytic Efficiency of TiO2/SnO2 Thin Film Stacks Prepared by DC Magnetron Sputtering. Vacuum 74, 723-727.
Ksibi, M., Rossignol, S., Tatibouët, J.-M., Trapalis, C., 2008. Synthesis and Solid Characterization of Nitrogen and Sulfur-doped TiO2 Photocatalysts Active Under Near Visible Light. Materials Letters 62, 4204-4206.
Legrand-Buscema, C., Malibert, C., Bach, S., 2002. Elaboration and Characterization of Thin Films of TiO2 Prepared by Sol–Gel Process. Thin Solid Films 418, 79-84.
Li, G.L., Wang, G.H., 1999. Synthesis of Nanometer-Sized TiO2 Particles by a Microemulsion Method. Nanostructured Materials 11, 663-668.
Li, H., Li, G., Zhu, J., Wan, Y., 2005. Preparation of an Active SO42−/TiO2 Photocatalyst for Phenol Degradation Under Supercritical Conditions. Journal of Molecular Catalysis A: Chemical 226, 93-100.
Li, J., Liu, L., Yu, Y., Tang, Y., Li, H., Du, F., 2004. Preparation of Highly Photocatalytic Active Nano-Size TiO2–Cu2O Particle Composites with a Novel Electrochemical Method. Electrochemistry Communications 6, 940-943.
Li, X., Xiong, R., Wei, G., 2008. S–N Co-Doped TiO2 Photocatalysts with Visible-Light Activity Prepared by Sol–Gel Method. Catalysis Letters 125, 104-109.
Liu, G., Sun, C., C. Smith, S., Wang, L., Lu, G.Q., Cheng, H.-M., 2010. Sulfur Doped Anatase TiO2 Single Crystals with a High Percentage of {001} Facets. J. Colloid Interface Sci. 349, 477-483.
Liu, S., Chen, X., 2008. A Visible Light Response TiO2 Photocatalyst Realized by Cationic S-Doping and Its Application for Phenol Degradation. Journal of Hazardous Materials 152, 48-55.
Liu, S.X., Qu, Z.P., Han, X.W., Sun, C.L., 2004. A Mechanism for Enhanced Photocatalytic Activity of Silver-Loaded Titanium Dioxide. Catal. Today 93-5, 877-884.
Lv, K., Zuo, H., Sun, J., Deng, K., Liu, S., Li, X., Wang, D., 2009. (Bi, C and N) Codoped TiO2 Nanoparticles. Journal of Hazardous Materials 161, 396-401.
Madarász, J., Brăileanu, A., Crişan, M., Pokol, G., 2009. Comprehensive Rvolved Gas Analysis (EGA) of Amorphous Precursors for S-Doped Titania by In Situ TG–FTIR and TG/DTA–MS in Air: Part 2. Precursor From Thiourea and Titanium(IV)-n-Butoxide. Journal of Analytical and Applied Pyrolysis 85, 549-556.
Mo, J.H., Zhang, Y.P., Xu, Q.J., Lamson, J.J., Zhao, R.Y., 2009. Photocatalytic Purification of Volatile Organic Compounds in Indoor Air: A Literature Review. Atmos. Environ. 43, 2229-2246.
Murai, K.-I., Endo, K., Nakagawa, T., Yamahata, A., Moriga, T., 2012. Study of Visible Light Reactive Photocatalyst TiO2 Prepared with Thioure. International Journal of Modern Physics Conference Series 06, 19-24.
Naik, B., Parida, K.M., Gopinath, C.S., 2010. Facile Synthesis of N- and S-Incorporated Nanocrystalline TiO2 and Direct Solar-Light-Driven Photocatalytic Activity. The Journal of Physical Chemistry C 114, 19473-19482.
Nakamura, R., Tanaka, T., Nakato, Y., 2004. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes. J. Phys. Chem. B 108, 10617-10620.
Noda, L.K., de Almeida, R.M., Probst, L.F.D., Gonçalves, N.S., 2005. Characterization of Sulfated TiO2 Prepared by the Sol–gel Method and Its Catalytic Activity in the n-Hexane Isomerization Reaction. Journal of Molecular Catalysis A: Chemical 225, 39-46.
Obee, T.N., Brown, R.T., 1995. TiO2 Photocatalysis for Indoor Air Applications - Effects of Humidity and Trace Contaminant Levels on The Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene. Environ. Sci. Technol. 29, 1223-1231.
Obee, T.N., Hay, S.O., 1997. Effects of Moisture and Temperature on The Photooxidation of Ethylene on Titania. Environ. Sci. Technol. 31, 2034-2038.
Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., 2004. Preparation of S-Doped TiO2 Photocatalysts and Their Photocatalytic Activities Under Visible Light. Applied Catalysis A: General 265, 115-121.
Ohno, T., Miyamoto, Z., Nishijima, K., Kanemitsu, H., Feng, X.Y., 2006. Sensitization of Photocatalytic Activity of S- or N-Doped TiO2 Particles by Adsorbing Fe3+ Cations. Appl. Catal. A-Gen. 302, 62-68.
Peng, X.-L., Yao, M.-M., Li, F., Sun, X.-H., 2011. Microstructures and Photocatalytic Properties of S Doped Nanocrystalline TiO2 Films. Particulate Science and Technology 30, 81-91.
Reddy, B.M., Rao, K.N., Reddy, G.K., Bharali, P., 2006. Characterization and Catalytic Activity of V2O5/Al2O3-TiO2 for Selective Oxidation of 4-Methylanisole. Journal of Molecular Catalysis A: Chemical 253, 44-51.
Ren, L., Yang, F.D., Zhang, Y.M., Yang, J., Li, M.Y., 2008. Preparation and Visible-Light Responsive Photocatalytic Activity of N-Doped TiO2 Photocatalyst. Chin. J. Inorg. Chem. 24, 541-546.
Rengifo-Herrera, J.A., Pierzchała, K., Sienkiewicz, A., Forró, L., Kiwi, J., Moser, J.E., Pulgarin, C., 2010. Synthesis, Characterization, and Photocatalytic Activities of Nanoparticulate N, S-Codoped TiO2 Having Different Surface-to-Volume Ratios. The Journal of Physical Chemistry C 114, 2717-2723.
Rockafellow, E.M., Stewart, L.K., Jenks, W.S., 2009. Is Sulfur-Doped TiO2 an Effective Visible Light Photocatalyst for Remediation? Applied Catalysis B: Environmental 91, 554-562.
Satterfield, C.N., 1991. Heterogeneous Catalysis in Industrial Practice. 2nd Edition.
Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., 1995. Exploiting The Interparticle Electron-Transfer Process In The Photocatalyzed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol - Chemical Evidence for Electron and Hole Transfer Between Coupled Semiconductors. J. Photochem. Photobiol. A-Chem. 85, 247-255.
Shao-You, L., Qun-Li, T., Qing-Ge, F., 2011. Synthesis of S/Cr Doped Mesoporous TiO2 with High-Active Visible Light Degradation Property via Solid State Reaction Route. Appl. Surf. Sci. 257, 5544-5551.
Sivakumar, S., Krishna Pillai, P., Mukundan, P., Warrier, K.G.K., 2002. Sol–Gel Synthesis of Nanosized Anatase from Titanyl Sulfate. Materials Letters 57, 330-335.
Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J.M., 2009. Photocatalytic Oxidation of Toluene at Indoor Air Levels (ppbv): Towards a Better Assessment of Conversion, Reaction Intermediates and Mineralization. Appl. Catal. B-Environ. 86, 159-165.
Spurr, G., 1957. The Frequency of Light Winds in The English Channel. Quarterly Journal of the Royal Meteorological Society 83, 549-552.
Suffet, I.H.M., Burlingame, G.A., Rosenfeld, P.E., Bruchet, A., 2004. The Value of An Odor-Quality-Wheel Classification Scheme for Wastewater Treatment Plants.
Sun, H., Liu, H., Ma, J., Wang, X., Wang, B., Han, L., 2008. Preparation and Characterization of Sulfur-Doped TiO2/Ti Photoelectrodes and Their Photoelectrocatalytic Performance. Journal of Hazardous Materials 156, 552-559.
Teeling, E.C., Springer, M.S., Madsen, O., Bates, P., O'Brien, S.J., Murphy, W.J., 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580-584.
Umebayashi, T., Yamaki, T., Itoh, H., Asai, K., 2002a. Analysis of Electronic Structures of 3d Transition Metal-Doped TiO2 Based on Band Calculations. J. Phys. Chem. Solids 63, 1909-1920.
Umebayashi, T., Yamaki, T., Itoh, H., Asai, K., 2002b. Band Gap Narrowing of Titanium Dioxide by Sulfur Doping. Applied Physics Letters 81, 454-456.
Vincent, G., Marquaire, P.M., Zahraa, O., 2009. Photocatalytic Degradation of Gaseous 1-Propanol Using an Annular Reactor: Kinetic Modelling and Pathways. Journal of Hazardous Materials 161, 1173-1181.
Wang, P., Yap, P.-S., Lim, T.-T., 2011. C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Applied Catalysis A: General 399, 252-261.
Wang, S.B., Ang, H.M., Tade, M.O., 2007. Volatile Organic Compounds in Indoor Environment and Photocatalytic Oxidation: State of The Art. Environ. Int. 33, 694-705.
Wang, Y.-X., Huang, L., Sun, L.-C., Xie, S.-Y., Xu, G.-L., Chen, S.-R., Xu, Y.-F., Li, J.-T., Chou, S.-L., Dou, S.-X., Sun, S.-G., 2012. Facile Synthesis of a Interleaved Expanded Graphite-Embedded Sulphur Nanocomposite as Cathode of Li-S Batteries with Excellent Lithium Storage Performance. J. Mater. Chem. 22, 4744-4750.
Wei, F., Ni, L., Cui, P., 2008. Preparation and Characterization of N–S-Codoped TiO2 Photocatalyst and Its Photocatalytic Activity. Journal of Hazardous Materials 156, 135-140.
Xiang, Q., Yu, J., Jaroniec, M., 2011. Nitrogen and Sulfur Co-doped TiO2 Nanosheets with Exposed {001} Facets: Synthesis, Characterization and Visible-Light Photocatalytic Activity. Physical Chemistry Chemical Physics 13.
Xu, J.-H., Li, J., Dai, W.-L., Cao, Y., Li, H., Fan, K., 2008. Simple fabrication of twist-like helix N,S-codoped titania photocatalyst with visible-light response. Applied Catalysis B: Environmental 79, 72-80.
Xu, Y.-H., Wang, L.-Y., Zhang, Q., Zheng, S.-J., Li, X.-J., Huang, C., 2005. Correlation between photoreactivity and photophysics of sulfated TiO2 photocatalyst. Materials Chemistry and Physics 92, 470-474.
Yang, G., Yan, Z., Xiao, T., 2012. Low-Temperature Solvothermal Synthesis of Visible-Light-Responsive S-Doped TiO2 Nanocrystal. Appl. Surf. Sci. 258, 4016-4022.
Yang, J., Bai, H., Tan, X., Lian, J., 2006. IR and XPS Investigation of Visible-Light Photocatalysis—Nitrogen–Carbon-Doped TiO2 Film. Appl. Surf. Sci. 253, 1988-1994.
Yates, J.R., Eng, J., McCormack, A.L., Moji, T., Pious, D., 1995. Studies of Immunological Pathways by Using Tandem Mass-spectrometry and Database Searching. Abstr. Pap. Am. Chem. Soc. 209, 122-ANYL.
Ye, X., Chen, D., Gossage, J., Li, K., 2006. Photocatalytic Oxidation of Aldehydes: Byproduct Identification and Reaction Pathway. Journal of Photochemistry and Photobiology A: Chemistry 183, 35-40.
Yin, S., Yamaki, H., Komatsu, M., Zhang, Q.W., Wang, J.S., Tang, Q., Saito, F., Sato, T., 2003. Preparation of Nitrogen-Doped Titania with High Visible Light Induced Photocatalytic Activity by Mechanochemical Reaction of Titania and Hexamethylenetetramine. J. Mater. Chem. 13, 2996-3001.
Yu, C., Cai, D., Yang, K., Yu, J.C., Zhou, Y., Fan, C., 2010. Sol–Gel Derived S,I-Codoped Mesoporous TiO2 Photocatalyst with High Visible-Light Photocatalytic Activity. J. Phys. Chem. Solids 71, 1337-1343.
Yu, C., Yu, J., 2009. A Simple Way to Prepare C–N-Codoped TiO2 Photocatalyst with Visible-Light Activity. Catalysis Letters 129, 462-470.
Yu, J.C., Ho, W., Yu, J., Yip, H., Wong, P.K., Zhao, J., 2005. Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania. Environ. Sci. Technol. 39, 1175-1179.
Zaleska, A., Górska, P., Sobczak, J.W., Hupka, J., 2007. Thioacetamide and Thiourea Impact on Visible Light Activity of TiO2. Applied Catalysis B: Environmental 76, 1-8.
Zeng, T., Liu, H.J., Shu, Z., 2011. Discussion the Mechanism of Sulfur and Phosphorus Doped TiO2. Advanced Materials Research 393 - 395, 1157-1160.
Zhang, L., Li, L., Mou, Z., Li, X., 2012. Study on Microstructure and Catalytic Performance of B, C, N Co-dopped TiO2. Procedia Engineering 27, 552-556.
Zhang, W., Liu, W., Wang, C., 2002. Tribological Behavior of Sol–Gel TiO2 Films on Glass. Wear 253, 377-384.
Zhang, Y., Shen, Y., Gu, F., Wu, M.M., Xie, Y., Zhang, J.C., 2009. Influence of Fe Ions in Characteristics and Optical Properties of Mesoporous Titanium Oxide Thin Films. Appl. Surf. Sci. 256, 85-89.
Zhou, M., Yu, J., 2008. Preparation and Enhanced Daylight-Induced Photocatalytic Activity of C,N,S-Tridoped Titanium Dioxide Powders. Journal of Hazardous Materials 152, 1229-1236.
Zhou, X., Ji, H., Huang, X., 2012. Photocatalytic Degradation of Methyl Orange over Metalloporphyrins Supported on TiO2 Degussa P25. Molecules 17, 1149-1158.
行政院環境保護署,「固定汙染源管制-揮發性有機物控制技術介紹」,http://stationary.estc.tw/meat.asp?ctNode=563,2011。
行政院環境保護署,「環保統計資料庫」,http://210.69.101.110/WEBSTATIS/webindex.htm,2010
垰田博史,「光觸媒圖解」,商周出版社,2003。
林麗娟,「X光繞射原理及其應用」,工業材料,第八十六期,p.101,1994。
林有銘,「無所不在的環境清潔工─奈米光觸媒」,科學發展,第四○八期,24-31,2006。
高濂、鄭珊、張青紅,「奈米光觸媒」,五南圖書出版股份有限公司,2004。
陳慧英、黃定加、朱秦億,「溶膠凝膠法在薄膜製備上的應用」,化工技術,第七卷,第十一期,1999,152-167。
陳怡儒,「以S摻雜TiO2光觸媒在可見光下處理二硫二甲烷之研究」,國立成功大學環境工程研究所碩士論文,2011。
張豐堂、粘愷峻、王秉才、謝紹祖、林美玲,「排氣VOC控制案例」,環境工程會刊,第二十卷,第二期,2009。
李秉傑、邱宏明、王亦凱合譯,「非均勻係催化原理與應用」,渤海堂文化公司印行,1988。
黃柳青譯,「化工動力學與反應設計下冊」,科技出版社,p.120-123,1993。
呂立德,「化工動力與化工熱力」,粒工出版社,1991。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top