跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 03:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊沛晨
研究生(外文):Pei-ChenChuang
論文名稱:石化燃料減量技術對於石化製程盤查之影響
論文名稱(外文):Implications of fossil fuel-saving technologies on inventory of petrochemical processes
指導教授:福島康裕
指導教授(外文):Yasuhiro Fukushima
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:73
中文關鍵詞:石化燃料減量技術預測型生命週期評估物質流分析製程盤查
外文關鍵詞:Fossil fuel-saving technologyConsequential LCAMaterial Flow analysisProcess inventory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:804
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
近年來,隨著溫室氣體大量排放造成之氣候異常變化,已引起世界各國關注。由於溫室氣體大多由石化燃料消耗所產生,因此減少石化燃料消耗便為有效減緩全球氣候暖化之手段,而尋找最佳減量之方式更是刻不容緩。為了尋找此最佳減量之方式,必須評估各種不同石化燃料減量技術所造成之影響,並由生命週期之角度出發,不僅考慮末端燃料使用,且將燃料製造之每階段納入評估範圍。
在石油煉製系統中,每項產物均有固定產出比例,若當某一產物之需求驟降,將會造成系統內製程間的物質流造成極大的變動。然而,成因型生命週期評估方法並不適合處理此類問題,因為在考量某一產品需求下降時,並不能兼顧其副產品需求變動,也無法得知製程間不同物質流變化情形,所以當某一產品需求大幅下降時,其預測之溫室氣體減量值即與實際狀況有很大的誤差。因此,針對石油煉製製程所量身訂做的預測型生命週期方法是迫切被需要的。
本研究建構一套可在不同石化燃料需求的條件下,求得較傳統生命週期評估準確的數學模型。首先,國家石化產品進出口資料會被用來預估國內石化煉製廠的操作參數;然後,藉由輸入未來預期的需求量與此操作參數,透過線性方程式的運算求得石化煉製廠製程間之物質流量;最後,利用不同製程間的物質流量與其排放係數即可推算溫室氣體排放量。
台灣石化產品供需狀況為本研究的分析案例,其主要分析在不同之石化產品減量情境下,比較成因型與預測型生命週期評估方法之結果差異。結果顯示,在考量石化製程情況下,傳統生命週期評估方法之預測結果與預測型生命週期評估方法在某些石化產品上有著極大差異。而此數學模型將會在評估於不同石化產品需求下溫室氣體排放量中扮演關鍵的角色。
In recent years, issues related to climate change have been attracting the global attention. Since GHGs are mainly emitted from fuel combustion, reduction of fuels consumption is the most effective measure to mitigate climate changes. To investigate effective strategies to save fossil fuel consumption, evaluation of scenarios of fuel saving technologies is needed. Since GHGs are emitted not only at the use of the fuel but also at the every stage of life cycle, a life cycle wide scope should be applied in the evaluation.
From a viewpoint of petrochemical industry, since petrochemical products are coproduced from refineries, large-scale reduction in part of their co-products can simply result in its surplus, or inducing changes in the way each product is being produced, resulting in significant change in the process inventories. Evaluation of technology scenarios using results from attributional LCA based on current process inventories will overlook these aspects, which can result in significant errors. A consequential LCA framework reflecting correctly the assumptions and actual constraints in the refineries is necessary.
In this study, a consequential LCA framework for petrochemical products is proposed. Petrochemical process inventories are significantly different in different countries, but data is highly limited. In this framework, first, the operating parameters are estimated by fitting them using the national production record on petrochemical products. Secondly, material flows in the petroleum refining processes are derived by solving a set of linear simultaneous equations to satisfy the future needs. Finally, using the derived material flow information together with the emission factors of the respective processes, the GHG emission is calculated.
Taiwanese petrochemical industry is used as an example to demonstrate the proposed framework. The comparison of GHG emission reduction between the proposed and the attributional LCA is done. A significant difference in reduction of some of the products was highlighted. This model can play a key role in assessing the GHG reduction of scenarios that involve changes in the extent of use of petrochemical products.
Abstract i
中文摘要 iii
致謝 v
Table of contents vii
Figure index ix
Table index xii
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Motivation 5
1.3 Objective 6
1.4 Thesis Structure 6
Chapter 2 Paper Review 8
2.1 Life cycle assessment 8
2.2 Description of petroleum refinery 9
2.2.1 Atmospheric and Vacuum Distillation Process 11
2.2.2 Amine Treating Process 14
2.2.3 Isomerization 15
2.2.4 Catalytic Reforming 16
2.2.5 Naphtha Cracking 17
2.2.6 Hydrotreating 18
2.2.7 Alkylating 19
2.2.8 Catalytic Cracking 20
Chapter 3 Methodology 21
3.1 Goal and Scope Definition 23
3.2 Life Cycle Inventory Analysis 25
3.2.1 Data collection 28
3.2.2 Material flow equations construction 31
3.2.3 Parameters calibration 37
3.3 Life Cycle Impact Assessment 40
3.3.1 Consequential LCA 40
3.3.2 Conventional LCA 41
3.4 Interpretation 43
Chapter 4 Result and Discussion 44
4.1 Results of parameters calibration 44
4.2 Comparison between conventional and consequential LCA 48
4.2.1 Different result mainly due to the different emission factor between domestic and foreign refinery 52
4.2.2 Different result mainly due to changes of process inventory 60
Chapter 5 Conclusion 67
Chapter 6 Suggestion 68
Reference 69
Appendix Operating Procedure of Proposed Model 73
1.Curran MA, Mann M, and Norris G, Report on the International Workshop on Electricity Data for Life Cycle Inventorie, 2002, US Environmental Protection Agency: Cincinnati.
2.Earles, J. and A. Halog, Consequential life cycle assessment: a review. The International Journal of Life Cycle Assessment, 2011. 16(5): p. 445-453.
3.Ekvall, T. and A. Andrae, Attributional and Consequential Environmental Assessment of the Shift to Lead-Free Solders (10 pp). The International Journal of Life Cycle Assessment, 2006. 11(5): p. 344-353.
4.Thrane, M., LCA of Danish Fish Products. New methods and insights (9 pp). The International Journal of Life Cycle Assessment, 2006. 11(1): p. 66-74.
5.Lesage, P., et al., Environmental assessment of brownfield rehabilitation using two different life cycle inventory models. The International Journal of Life Cycle Assessment, 2007. 12(6): p. 391-398.
6.Schmidt, J.H., et al., Life cycle assessment of the waste hierarchy – A Danish case study on waste paper. Waste Management, 2007. 27(11): p. 1519-1530.
7.Wikipedia. Life-cycle assessment - Wikipedia, the free encyclopedia. 2012; Available from: http://en.wikipedia.org/wiki/Life-cycle_assessment.
8.Ekvall, T. Attributional and consequential LCI modeling. in InLCA/LCM 2003. 2003. Seattle.
9.許長春等, 石油煉製原理與實務1993: 中國石油公司人事處訓練所.
10.台塑石化股份有限公司. 台塑石化產品介紹 - 製程簡介. 2012; Available from: http://www.fpcc.com.tw/product/product_make.asp.
11.Wikipedia. Oil refinery - Wikipedia, the free encyclopedia. 2012; Available from: http://en.wikipedia.org/wiki/Oil_refinery.
12.Al-Muslim, H., I. Dincer, and S.M. Zubair, Exergy Analysis of Single- and Two-Stage Crude Oil Distillation Units. Journal of Energy Resources Technology, 2003. 125(3): p. 199.
13.Wikipedia. Amine gas treating - Wikipedia, the free encyclopedia. 2012; Available from: http://en.wikipedia.org/wiki/Amine_gas_treating.
14.孫賡年 and 施啟文, 石油煉製工業淺說1975, 嘉義市: 中國石油公司研究及訓練中心. 101.
15.Leffler, W.L., Petroleum Refining in Nontechnical Language Third Edition2000. 310.
16.台灣中油股份有限公司. 煉爐熬油寓神奇─原油煉製. 2012; Available from: http://www.cpc.com.tw/big5/content/index01.asp?sno=186&pno=108.
17.Wikipedia. Cracking (chemistry) - Wikipedia, the free encyclopedia. 2012; Available from: http://en.wikipedia.org/wiki/Cracking_(chemistry)#Steam_cracking.
18.羅明珊, 乙烯原料裂解特性的表徵. 廣石化科技, 2000. 1: p. 45.
19.Behera, B., S.S. Ray, and I.D. Singh, Chapter 12 NMR studies of FCC feeds, catalysts and coke, in Studies in Surface Science and Catalysis, M.L. Ocelli, Editor 2007, Elsevier. p. 163-200.
20.Baumann, H. and A.-M. Tillman, The Hitch Hiker's Guild to LCA - An orientation in life cycle assessment methodology and application2004: Stidemtlitteratur.
21.International Organization for Standardization, ISO 14040:2006, in Environmental management -- Life cycle assessment -- Principles and framework2006. p. 20.
22.Timothy J. Skone, P.E., K. Gerdes, and A.a.P. Office of Systems, Development of Baseline Data and Analysis of Life Cycle Greenhouse Gas Emissions of Petroleum-Based Fuel, 2008, National Energy Technology Laboratory. p. 148.
23.IPCC, Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, 1997.
24.Bureau of Energy, M.o.E.A., Energy Statistics Handbook 2010, 2011, Bureau of Energy, Ministry of Economic Affairs,.
25.台灣中油股份有限公司. 天涯河處覓油蹤─油氣是甚麼. 2012; Available from: http://www.cpc.com.tw/big5/content/index01.asp?sno=173&pno=108.
26.Taiwan Economic Journal Co. Ltd., 台灣經濟新報TEJ+, 2011.
27.行政院主計處. 中央政府總預決算查詢及統計資料庫. 2011; Available from: http://nplbudget.ly.gov.tw/.
28.台灣區石油化學工業同業公會, 我國主要石油化學品供需統計, in 石油工業月刊2010, 台灣區石油化學工業同業公會.
29.PRé Consultants, SimaPro 7.2.4, 2012.
30.Singh, R.B. and R.B. Singh, Evaluating Options for LPG recovery in Refinery Gas Plant Using Pro-II, 2012, Fluor Daniel India Pvt. Ltd.: New Delhi. p. 6.
31.郭議隆, 輕油裂解爐反應動力之數學模式, in 化學工程學系2001, 淡江大學. p. 101.
32.Mines, C.S.o., Hydroprocessing: Hydrocracking & Hydrotreating, 2012. p. 29.
33.Stratiev, D., I. Shishkova, and P. Dermatova, HEAT BALANCE OF THE VACUUM DISTILLATION COLUMN –KEY FOR IDENTIFICATION OF THE REASON FOR LOW HEAVY VACUUM GAS OIL YIELD, in 44th International Petroleum Conference2009: Bratislava, Slovak Republic. p. 8.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top