跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 11:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周沛宜
研究生(外文):Pei-YiChou
論文名稱:p53-WWOX-TIAF1為腫瘤抑制軸心
論文名稱(外文):A role of p53-WWOX-TIAF1 axis in tumor suppression
指導教授:張南山
指導教授(外文):Nan-Shan Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:74
中文關鍵詞:WOX1細胞移行p53TIAF1細胞間的辨識
外文關鍵詞:WOX1cell migrationp53TIAF1cell-cell recognition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
腫瘤抑制蛋白WWOX或WOX1的表現在許多惡性腫瘤中常有降低的現象。Wwox外顯子(exon) 1剔除的老鼠胚胎纖維母細胞(MEF)移行能力較原生型的MEF細胞強,且其細胞呈現單獨的移動方式。正常狀況下,原生型的MEF細胞會緊密排列在一起並集體遷移。而原生型細胞與Wwox剔除細胞的生長速率並沒有顯著的差異。WOX1過度的表現會抑制乳癌細胞MDA-MB-231及 MCF-7的移行。以小干擾RNA (siRNA)或dominant-negative WOX1抑制WOX1的表現時能促進細胞移行。WOX1會與p53及TIAF1交互作用。之前我們的研究已經指出同時表現WOX1、p53及TIAF1會促使細胞凋亡。本篇研究也顯示同時表現WOX1、p53及TIAF1時能抑制細胞的移行及非貼附性生長。值得注意的是,當原生型MEF細胞與WOX1缺失的MEF細胞在移行實驗中共同培養時,雖然兩株細胞都源自於同種的老鼠,WOX1缺失的MEF細胞卻不能辨識原生型細胞。當WOX1缺失的MEF細胞突觸接觸到原生型細胞時,它會改變移動方向往反向移行。此現象顯示WOX1可能參與在細胞互動的調控。此外,當表現WOX1的細胞和不表現WOX1的細胞相遇時,此兩種細胞的移行速度均會增加。TGF-beta1和TGF-beta2能促使Wwox+/+ MEF細胞移動,但卻會抑制Wwox-/- MEF細胞的移行。總而言之,WOX1能抑制細胞的移行並可能參與在細胞間的辨識。此外,WOX1參與在TGF-beta調控的細胞移行中。而WOX1/p53/TIAF1為潛在的腫瘤抑制軸心。
Tumor suppressor WWOX or WOX1 is frequently lost in many malignant tumors. Here we demonstrated that Wwox exon 1-ablation mouse embryonic fibroblasts (Wwox-/- MEF) migrated individeually and faster than wild type Wwox+/+ cells. Normally, the wild type cells aligned together tightly and migrated collectively. The proliferation rates have no significant different between WOX1 knockout cells and wild type cells. Transiently overexpressed WOX1 suppressed the migration of breast MDA-MB-231 and MCF-7 cells. Knockdown of WOX1 by small interfering RNA, or ectopic expression with dominant-negative WOX1 increased the migration. WOX1 interacts with p53 and TIAF1 (TGF-beta1-induced antiapoptotic factor). Previously we have determined that co-expression of WOX1, TIAF1, and/or p53 induces apoptosis. Here, we demonstrated that co-expression of WOX1, TIAF1, and/or p53 suppressed cancer cell migration and anchorage-independent cell growth. Remarkably, in migration assay, when wild type MEF cells met knockout cells, the knockout failed to recognize the wild type cells, although they were from the same mice strain. Upon reaching out with their dendrites to the wild type, the knockout cells then moved backward without aligning or regrouping with the wild type cells. The result suggests that WOX1 is involved in cell-cell interaction. Interestingly, when two distinct cell types, expressing with or without WOX1, encountered each other, they migrated faster. Stimulation of TGF-beta1 and TGF-beta2 promoted cell migration of Wwox+/+ MEF cells but not that of Wwox-/- MEF cells. Taken together, WOX1 not only suppresses cell migration but also participates in cell-cell recognition. Besides, WOX1 plays a regulatory role in the TGF-beta-mediated cell migration. WOX1/p53/TIAF1 is a potential axis of tumor suppression.
中文摘要 I
Abstract II
致謝 III
Index of Figures V
Abbreviation VI
Introduction 1
WW domain-containing oxidoreductase WWOX/WOX1 1
TGF-beta1-induced antiapoptotic factor TIAF1 7
p53 and its isoforms 9
Cell migration 12
The purpose of this study 16
Materials and Methods 17
Cell lines and cell culture 17
Chemicals and antibodies 18
cDNA Constructs and electroporation 18
Cell migration assay and time-lapse microscopy 19
Immunofluorescence Staining 20
Cell cycle analysis 20
Western blotting 21
Cell proliferation assay 21
Statistical analysis 22
Results 23
WOX1 suppresses cell migration 23
WOX1, TIAF1, and p53 suppress cell migration synergistically 24
WOX1 plays a role in cell-cell recognition 26
TGF-beta1 induces migration of Wwox+/+ MEF cells but not Wwox-/- MEF cells 29
Discussion 32
References 39
Figures 47
A., Bobisse, S., Rondina, M. B., Guzzardo, V., Parenti, A. R., Rosato, A., Bicciato, S., Balmain, A., and Piccolo, S. (2009) A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137, 87-98
Andreasen, P. A., Kjoller, L., Christensen, L., and Duffy, M. J. (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72, 1-22
Anensen, N., Oyan, A. M., Bourdon, J. C., Kalland, K. H., Bruserud, O., and Gjertsen, B. T. (2006) A distinct p53 protein isoform signature reflects the onset of induction chemotherapy for acute myeloid leukemia. Clin Cancer Res 12, 3985-3992
Aoubala, M., Murray-Zmijewski, F., Khoury, M. P., Fernandes, K., Perrier, S., Bernard, H., Prats, A. C., Lane, D. P., and Bourdon, J. C. (2011) p53 directly transactivates Delta133p53alpha, regulating cell fate outcome in response to DNA damage. Cell Death Differ 18, 248-258
Aqeilan, R. I., Palamarchuk, A., Weigel, R. J., Herrero, J. J., Pekarsky, Y., and Croce, C. M. (2004a) Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor. Cancer Res 64, 8256-8261
Aqeilan, R. I., Pekarsky, Y., Herrero, J. J., Palamarchuk, A., Letofsky, J., Druck, T., Trapasso, F., Han, S. Y., Melino, G., Huebner, K., and Croce, C. M. (2004b) Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl Acad Sci U S A 101, 4401-4406
Aqeilan, R. I., and Croce, C. M. (2007a) WWOX in biological control and tumorigenesis. J Cell Physiol 212, 307-310
Aqeilan, R. I., Trapasso, F., Hussain, S., Costinean, S., Marshall, D., Pekarsky, Y., Hagan, J. P., Zanesi, N., Kaou, M., Stein, G. S., Lian, J. B., and Croce, C. M. (2007b) Targeted deletion of Wwox reveals a tumor suppressor function. Proc Natl Acad Sci U S A 104, 3949-3954
Aqeilan, R. I., Hassan, M. Q., de Bruin, A., Hagan, J. P., Volinia, S., Palumbo, T., Hussain, S., Lee, S. H., Gaur, T., Stein, G. S., Lian, J. B., and Croce, C. M. (2008) The WWOX tumor suppressor is essential for postnatal survival and normal bone metabolism. J Biol Chem 283, 21629-21639
Bednarek, A. K., Laflin, K. J., Daniel, R. L., Liao, Q., Hawkins, K. A., and Aldaz, C. M. (2000) WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 60, 2140-2145
Bednarek, A. K., Keck-Waggoner, C. L., Daniel, R. L., Laflin, K. J., Bergsagel, P. L., Kiguchi, K., Brenner, A. J., and Aldaz, C. M. (2001) WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 61, 8068-8073
Bourdon, J. C., Fernandes, K., Murray-Zmijewski, F., Liu, G., Diot, A., Xirodimas, D. P., Saville, M. K., and Lane, D. P. (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19, 2122-2137
Bourdon, J. C. (2007) p53 and its isoforms in cancer. Br J Cancer 97, 277-282
Bourdon, J. C., Khoury, M. P., Diot, A., Baker, L., Fernandes, K., Aoubala, M., Quinlan, P., Purdie, C. A., Jordan, L. B., Prats, A. C., Lane, D. P., and Thompson, A. M. (2011) p53 mutant breast cancer patients expressing p53gamma have as good a prognosis as wild-type p53 breast cancer patients. Breast Cancer Res 13, R7
Bouteille, N., Driouch, K., Hage, P. E., Sin, S., Formstecher, E., Camonis, J., Lidereau, R., and Lallemand, F. (2009) Inhibition of the Wnt/beta-catenin pathway by the WWOX tumor suppressor protein. Oncogene 28, 2569-2580
Burridge, K., and Chrzanowska-Wodnicka, M. (1996) Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 12, 463-518
Chang, J. Y., Chiang, M. F., Lin, S. R., Lee, M. H., He, H., Chou, P. Y., Chen, S. J., Chen, Y. A., Yang, L. Y., Lai, F. J., Hsieh, C. C., Hsieh, T. H., Sheu, H. M., Sze, C. I., and Chang, N. S. (2012) TIAF1 self-aggregation in peritumor capsule formation, spontaneous activation of SMAD-responsive promoter in p53-deficient environment, and cell death. Cell Death Dis 3, e302
Chang, N. S., Mattison, J., Cao, H., Pratt, N., Zhao, Y., and Lee, C. (1998) Cloning and characterization of a novel transforming growth factor-beta1-induced TIAF1 protein that inhibits tumor necrosis factor cytotoxicity. Biochem Biophys Res Commun 253, 743-749
Chang, N. S., Pratt, N., Heath, J., Schultz, L., Sleve, D., Carey, G. B., and Zevotek, N. (2001) Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J Biol Chem 276, 3361-3370
Chang, N. S. (2002) A potential role of p53 and WOX1 in mitochondrial apoptosis (review). Int J Mol Med 9, 19-24
Chang, N. S., Doherty, J., and Ensign, A. (2003a) JNK1 physically interacts with WW domain-containing oxidoreductase (WOX1) and inhibits WOX1-mediated apoptosis. J Biol Chem 278, 9195-9202
Chang, N. S., Doherty, J., Ensign, A., Lewis, J., Heath, J., Schultz, L., Chen, S. T., and Oppermann, U. (2003b) Molecular mechanisms underlying WOX1 activation during apoptotic and stress responses. Biochem Pharmacol 66, 1347-1354
Chang, N. S., Doherty, J., Ensign, A., Schultz, L., Hsu, L. J., and Hong, Q. (2005a) WOX1 is essential for tumor necrosis factor-, UV light-, staurosporine-, and p53-mediated cell death, and its tyrosine 33-phosphorylated form binds and stabilizes serine 46-phosphorylated p53. J Biol Chem 280, 43100-43108
Chang, N. S., Schultz, L., Hsu, L. J., Lewis, J., Su, M., and Sze, C. I. (2005b) 17beta-Estradiol upregulates and activates WOX1/WWOXv1 and WOX2/WWOXv2 in vitro: potential role in cancerous progression of breast and prostate to a premetastatic state in vivo. Oncogene 24, 714-723
Chang, N. S., Hsu, L. J., Lin, Y. S., Lai, F. J., and Sheu, H. M. (2007) WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med 13, 12-22
Comer, K. A., Dennis, P. A., Armstrong, L., Catino, J. J., Kastan, M. B., and Kumar, C. C. (1998) Human smooth muscle alpha-actin gene is a transcriptional target of the p53 tumor suppressor protein. Oncogene 16, 1299-1308
Fabbri, M., Iliopoulos, D., Trapasso, F., Aqeilan, R. I., Cimmino, A., Zanesi, N., Yendamuri, S., Han, S. Y., Amadori, D., Huebner, K., and Croce, C. M. (2005) WWOX gene restoration prevents lung cancer growth in vitro and in vivo. Proc Natl Acad Sci U S A 102, 15611-15616
Ferguson, B. W., Gao, X., Kil, H., Lee, J., Benavides, F., Abba, M. C., and Aldaz, C. M. (2012) Conditional Wwox deletion in mouse mammary gland by means of two Cre recombinase approaches. PLoS One 7, e36618
Fidler, I. J. (2003) The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 3, 453-458
Friedl, P., Maaser, K., Klein, C. E., Niggemann, B., Krohne, G., and Zanker, K. S. (1997) Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res 57, 2061-2070
Friedl, P., and Wolf, K. (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3, 362-374
Friedl, P. (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16, 14-23
Friedl, P., and Wolf, K. (2008) Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res 68, 7247-7249
Fujita, K., Mondal, A. M., Horikawa, I., Nguyen, G. H., Kumamoto, K., Sohn, J. J., Bowman, E. D., Mathe, E. A., Schetter, A. J., Pine, S. R., Ji, H., Vojtesek, B., Bourdon, J. C., Lane, D. P., and Harris, C. C. (2009) p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol 11, 1135-1142
Gadea, G., Lapasset, L., Gauthier-Rouviere, C., and Roux, P. (2002) Regulation of Cdc42-mediated morphological effects: a novel function for p53. EMBO J 21, 2373-2382
Gadea, G., Roger, L., Anguille, C., de Toledo, M., Gire, V., and Roux, P. (2004) TNFalpha induces sequential activation of Cdc42- and p38/p53-dependent pathways that antagonistically regulate filopodia formation. J Cell Sci 117, 6355-6364
Gadea, G., de Toledo, M., Anguille, C., and Roux, P. (2007) Loss of p53 promotes RhoA-ROCK-dependent cell migration and invasion in 3D matrices. J Cell Biol 178, 23-30
Gaudio, E., Palamarchuk, A., Palumbo, T., Trapasso, F., Pekarsky, Y., Croce, C. M., and Aqeilan, R. I. (2006) Physical association with WWOX suppresses c-Jun transcriptional activity. Cancer Res 66, 11585-11589
Ghosh, A., Stewart, D., and Matlashewski, G. (2004) Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol 24, 7987-7997
Gourley, C., Paige, A. J., Taylor, K. J., Ward, C., Kuske, B., Zhang, J., Sun, M., Janczar, S., Harrison, D. J., Muir, M., Smyth, J. F., and Gabra, H. (2009) WWOX gene expression abolishes ovarian cancer tumorigenicity in vivo and decreases attachment to fibronectin via integrin alpha3. Cancer Res 69, 4835-4842
Goyal, P., Behring, A., Kumar, A., and Siess, W. (2011) STK35L1 associates with nuclear actin and regulates cell cycle and migration of endothelial cells. PLoS One 6, e16249
Hall, A. (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33, 891-895
Hezova, R., Ehrmann, J., and Kolar, Z. (2007) WWOX, a new potential tumor suppressor gene. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 151, 11-15
Hong, Q., Sze, C. I., Lin, S. R., Lee, M. H., He, R. Y., Schultz, L., Chang, J. Y., Chen, S. J., Boackle, R. J., Hsu, L. J., and Chang, N. S. (2009) Complement C1q activates tumor suppressor WWOX to induce apoptosis in prostate cancer cells. PLoS One 4, e5755
Hsu, L. J., Schultz, L., Hong, Q., Van Moer, K., Heath, J., Li, M. Y., Lai, F. J., Lin, S. R., Lee, M. H., Lo, C. P., Lin, Y. S., Chen, S. T., and Chang, N. S. (2009) Transforming growth factor beta1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J Biol Chem 284, 16049-16059
Hu, B. S., Tan, J. W., Zhu, G. H., Wang, D. F., Zhou, X., and Sun, Z. Q. (2012) WWOX induces apoptosis and inhibits proliferation of human hepatoma cell line SMMC-7721. World J Gastroenterol 18, 3020-3026
Hynes, R. O. (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687
Iliopoulos, D., Fabbri, M., Druck, T., Qin, H. R., Han, S. Y., and Huebner, K. (2007) Inhibition of breast cancer cell growth in vitro and in vivo: effect of restoration of Wwox expression. Clin Cancer Res 13, 268-274
Iotsova, V., and Stehelin, D. (1996) Down-regulation of fibronectin gene expression by the p53 tumor suppressor protein. Cell Growth Differ 7, 629-634
Jakowlew, S. B. (2006) Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 25, 435-457
Jin, C., Ge, L., Ding, X., Chen, Y., Zhu, H., Ward, T., Wu, F., Cao, X., Wang, Q., and Yao, X. (2006) PKA-mediated protein phosphorylation regulates ezrin-WWOX interaction. Biochem Biophys Res Commun 341, 784-791
Kalluri, R., and Weinberg, R. A. (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420-1428
Khera, S., and Chang, N. S. (2003) TIAF1 participates in the transforming growth factor beta1--mediated growth regulation. Ann N Y Acad Sci 995, 11-21
Khoury, M. P., and Bourdon, J. C. (2011) p53 Isoforms: An Intracellular Microprocessor? Genes Cancer 2, 453-465
Lacroix, M., Toillon, R. A., and Leclercq, G. (2006) p53 and breast cancer, an update. Endocr Relat Cancer 13, 293-325
Lan, C., Chenggang, W., Yulan, B., Xiaohui, D., Junhui, Z., and Xiao, W. (2012) Aberrant expression of WWOX protein in epithelial ovarian cancer: a clinicopathologic and immunohistochemical study. Int J Gynecol Pathol 31, 125-132
Lane, D., and Levine, A. (2010) p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2, a000893
Lauffenburger, D. A., and Horwitz, A. F. (1996) Cell migration: a physically integrated molecular process. Cell 84, 359-369
Lee, M. H., Lin, S. R., Chang, J. Y., Schultz, L., Heath, J., Hsu, L. J., Kuo, Y. M., Hong, Q., Chiang, M. F., Gong, C. X., Sze, C. I., and Chang, N. S. (2010) TGF-beta induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid beta plaques in Alzheimer's disease. Cell Death Dis 1, e110
Levine, A. J., and Oren, M. (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9, 749-758
Li, M. Y., Lai, F. J., Hsu, L. J., Lo, C. P., Cheng, C. L., Lin, S. R., Lee, M. H., Chang, J. Y., Subhan, D., Tsai, M. S., Sze, C. I., Pugazhenthi, S., Chang, N. S., and Chen, S. T. (2009a) Dramatic co-activation of WWOX/WOX1 with CREB and NF-kappaB in delayed loss of small dorsal root ganglion neurons upon sciatic nerve transection in rats. PLoS One 4, e7820
Li, Y., Zhou, Z., Alimandi, M., and Chen, C. (2009b) WW domain containing E3 ubiquitin protein ligase 1 targets the full-length ErbB4 for ubiquitin-mediated degradation in breast cancer. Oncogene 28, 2948-2958
Lin, H. P., Chang, J. Y., Lin, S. R., Lee, M. H., Huang, S. S., Hsu, L. J., and Chang, N. S. (2011) Identification of an In Vivo MEK/WOX1 Complex as a Master Switch for Apoptosis in T Cell Leukemia. Genes Cancer 2, 550-562
Lin, J. T., Tzai, T. S., Liao, C. Y., Wang, J. S., Wu, T. T., Wang, H. Y., Wu, C. H., Yu, C. C., and Lu, P. J. (2012) WWOX Protein Expression Varies Among RCC Histotypes and Downregulation of WWOX Protein Correlates with Less-Favorable Prognosis in Clear RCC. Ann Surg Oncol
Ludes-Meyers, J. H., Kil, H., Parker-Thornburg, J., Kusewitt, D. F., Bedford, M. T., and Aldaz, C. M. (2009) Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene. PLoS One 4, e7775
Mahajan, N. P., Whang, Y. E., Mohler, J. L., and Earp, H. S. (2005) Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res 65, 10514-10523
McClatchey, A. I. (2003) Merlin and ERM proteins: unappreciated roles in cancer development? Nat Rev Cancer 3, 877-883
Menendez, D., Inga, A., and Resnick, M. A. (2009) The expanding universe of p53 targets. Nat Rev Cancer 9, 724-737
Meulmeester, E., and Ten Dijke, P. (2011) The dynamic roles of TGF-beta in cancer. J Pathol 223, 205-218
Mukhopadhyay, D., Tsiokas, L., and Sukhatme, V. P. (1995) Wild-type p53 and v-Src exert opposing influences on human vascular endothelial growth factor gene expression. Cancer Res 55, 6161-6165
Muller, P. A., Vousden, K. H., and Norman, J. C. (2011) p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192, 209-218
Murray-Zmijewski, F., Slee, E. A., and Lu, X. (2008) A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol 9, 702-712
Nabeshima, K., Inoue, T., Shimao, Y., and Sameshima, T. (2002) Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 52, 255-264
Naumanen, P., Lappalainen, P., and Hotulainen, P. (2008) Mechanisms of actin stress fibre assembly. J Microsc 231, 446-454
Nunez, M. I., Ludes-Meyers, J., and Aldaz, C. M. (2006) WWOX protein expression in normal human tissues. J Mol Histol 37, 115-125
Paige, A. J., Taylor, K. J., Taylor, C., Hillier, S. G., Farrington, S., Scott, D., Porteous, D. J., Smyth, J. F., Gabra, H., and Watson, J. E. (2001) WWOX: a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci U S A 98, 11417-11422
Parri, M., and Chiarugi, P. (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8, 23
Perera, M., Tsang, C. S., Distel, R. J., Lacy, J. N., Ohno-Machado, L., Ricchiuti, V., Samaranayake, L. P., Smejkal, G. B., Smith, M. G., Trachtenberg, A. J., and Kuo, W. P. (2010) TGF-beta1 interactome: metastasis and beyond. Cancer Genomics Proteomics 7, 217-229
Qin, H. R., Iliopoulos, D., Semba, S., Fabbri, M., Druck, T., Volinia, S., Croce, C. M., Morrison, C. D., Klein, R. D., and Huebner, K. (2006) A role for the WWOX gene in prostate cancer. Cancer Res 66, 6477-6481
Ray, P. S., Grover, R., and Das, S. (2006) Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 7, 404-410
Roberts, A. B., and Wakefield, L. M. (2003) The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A 100, 8621-8623
Rorth, P. (2009) Collective cell migration. Annu Rev Cell Dev Biol 25, 407-429
Sahai, E., and Marshall, C. J. (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5, 711-719
Schultz, L., Khera, S., Sleve, D., Heath, J., and Chang, N. S. (2004) TIAF1 and p53 functionally interact in mediating apoptosis and silencing of TIAF1 abolishes nuclear translocation of serine 15-phosphorylated p53. DNA Cell Biol 23, 67-74
Steeg, P. S. (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12, 895-904
Su, W. P., Chen, S., H., Chen, S. J., Chou, P. Y., Huang, C. C., and Chang, N. S. (2012) WW Domain-Containing Oxidoreductase is a Potential Receptor for Sex Steroid Hormones. in Sex hormones (Dubey, R. K. ed.), InTech, University Campus Rijeka. pp 333-351
Sun, Y., Wenger, L., Rutter, J. L., Brinckerhoff, C. E., and Cheung, H. S. (1999) p53 down-regulates human matrix metalloproteinase-1 (Collagenase-1) gene expression. J Biol Chem 274, 11535-11540
Suzuki, H., Katayama, K., Takenaka, M., Amakasu, K., Saito, K., and Suzuki, K. (2009) A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy. Genes Brain Behav 8, 650-660
Sze, C. I., Su, M., Pugazhenthi, S., Jambal, P., Hsu, L. J., Heath, J., Schultz, L., and Chang, N. S. (2004) Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer's disease. J Biol Chem 279, 30498-30506
van der Leij, J., van den Berg, A., Albrecht, E. W., Blokzijl, T., Roozendaal, R., Gouw, A. S., de Jong, K. P., Stegeman, C. A., van Goor, H., Chang, N. S., and Poppema, S. (2003) High expression of TIAF-1 in chronic kidney and liver allograft rejection and in activated T-helper cells. Transplantation 75, 2076-2082
Wang, X., Chao, L., Jin, G., Ma, G., Zang, Y., and Sun, J. (2009) Association between CpG island methylation of the WWOX gene and its expression in breast cancers. Tumour Biol 30, 8-14
Watanabe, A., Hippo, Y., Taniguchi, H., Iwanari, H., Yashiro, M., Hirakawa, K., Kodama, T., and Aburatani, H. (2003) An opposing view on WWOX protein function as a tumor suppressor. Cancer Res 63, 8629-8633
Wei, J., Zaika, E., and Zaika, A. (2012) p53 Family: Role of Protein Isoforms in Human Cancer. J Nucleic Acids 2012, 687359
Wolf, K., Wu, Y. I., Liu, Y., Geiger, J., Tam, E., Overall, C., Stack, M. S., and Friedl, P. (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9, 893-904
Yan, J., Zhang, M., Zhang, J., Chen, X., and Zhang, X. (2011) Helicobacter pylori infection promotes methylation of WWOX gene in human gastric cancer. Biochem Biophys Res Commun 408, 99-102
Zelazowski, M. J., Pluciennik, E., Pasz-Walczak, G., Potemski, P., Kordek, R., and Bednarek, A. K. (2011) WWOX expression in colorectal cancer--a real-time quantitative RT-PCR study. Tumour Biol 32, 551-560
Zhang, P., Jia, R., Ying, L., Liu, B., Qian, G., Fan, X., and Ge, S. (2012) WWOX-mediated apoptosis in A549 cells mainly involves the mitochondrial pathway. Mol Med Report 6, 121-124
Zhao, R., Gish, K., Murphy, M., Yin, Y., Notterman, D., Hoffman, W. H., Tom, E., Mack, D. H., and Levine, A. J. (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev 14, 981-993

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top