跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林秉杰
研究生(外文):Bing-JieLin
論文名稱:懸掛式石墨烯之拉曼光譜量測分析
論文名稱(外文):The characterization of free-standing Graphene using Raman spectroscopy
指導教授:崔祥辰
指導教授(外文):Hsiang-Chen Chui
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:61
中文關鍵詞:石墨烯拉曼光譜
外文關鍵詞:grapheneRaman spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1765
  • 評分評分:
  • 下載下載:172
  • 收藏至我的研究室書目清單書目收藏:0
本實驗是研究懸掛式石墨烯的拉曼光譜特性。在第一章主要是簡單介紹一下石墨烯的結構及石墨烯的拉曼光譜。在第二章就著重於懸掛式石墨烯的拉曼光譜量測與結果分析與偏振拉曼散射光譜量測與結果分析。在第三章則是著重於懸掛式石墨烯的表面增強拉曼散射光譜量測與結果分析。第四章就是將研究懸掛式石墨烯的拉曼光譜特性做個統整與總結。
在第二章的懸掛式石墨烯拉曼光譜發現懸掛式石墨烯的G-band與2D-band相較於一般與基板直接接觸的石墨烯有明顯的紅位移現象,而這明顯的紅位移現象,其原因是受到應變的影響所造成。再來我們在懸掛式石墨烯的偏振拉曼散射光譜中發現,2D-band的強度與入射光的偏振方向有很大的關係,當入射光的偏振方向與收光的偏振方向平行時有最大值,最小值則出現在偏振方向與收光的偏振方向垂直的時候。
在第三章中,我們將懸掛式石墨烯熱蒸鍍上銀奈米粒子後做表面增強拉曼散射光譜量測,首先比較不同波長的激發雷射的差異,結果發現利用532nm雷射的拉曼訊號增強效果較633nm雷射來的好,其原因為銀奈米粒子的吸收波段較靠近532nm的範圍。第二部分是比較單層與雙層懸掛式石墨烯的拉曼訊號增強效果的差異,結果發現單層懸掛式石墨烯的拉曼訊號增強效果較雙層來的好,其原因為銀奈米粒子在不同層數的大小與分布情形不同所造成。第二部分是比較不同區域拉曼訊號增強效果的差異,結果發現在懸空區域的石墨烯的拉曼訊號增強效果較覆蓋在二氧化矽上的石墨烯來的好,其原因為懸空區域的石墨烯沒有二氧化矽作為一個反射層所以光線直接穿過無法利用反射再次參與反應,所以拉曼訊號增強效果較差。

關鍵字:石墨烯;拉曼光譜; Graphene ;Raman spectroscopy

This thesis is organized as followed: Chapter 1 a brief introduction to Graphene and Raman spectroscopy .In chapter2, I will introduction the research about Raman spectroscopy of Free-Standing single-layer graphene. I used Micro-Raman spectroscopy system and Polarized micro-Raman system to analyze Free-Standing single-layer graphene. In chapter3, I introduce the research about Surface Enhanced Raman Spectroscopy of Free-Standing Graphene, the SERS spectra of single- and bi-layer graphene were measured by depositing Ag nanoparticles on graphene via thermal evaporation. In chapter4, I summarized my work on the studies of characterization of free-standing Graphene.
In the studies of Raman spectroscopy of Free-Standing single-layer graphene, I used Micro-Raman spectroscopy system and Polarized micro-Raman system to analyze Free-Standing single-layer graphene. I found the Raman G-mode feature of suspended graphene is appreciably red- shifted (by 12 cm-1) compared with the supported region and the Raman 2D mode of the free-standing graphene is red- shifted (by 24 cm-1) with respect to the supported portion. I guess the red-shift phenomenon is dependent on the strain and I try to calculate the strain of the sample. After calculating found the region of suspended (~0.3%) have bigger strain than supported (~0.2%) region. Second I studied this sample using Micro- Polarized Raman system. I found that the 2D band of free-standing graphene show a strong polarization dependence. The intensity ratio of 2D to G band shows oscillatory behavior (with minima at 90。 and 270。and maxima at 0。, 180。, and 360。). This observation is a consequence of anisotropy absorption of photon near the K-point of the Brillouin zone.
In the studies of Surface Enhanced Raman Spectroscopy of Free-Standing Graphene, the SERS spectra of single- and bi-layer graphene were measured by depositing Ag nanoparticles on graphene via thermal evaporation.
(i)Single-layer graphene provides much larger SERS enhancement compared to bi-layer graphene The reason is the morphologies of Ag particle distribution density in single-layer graphene is bigger than bi-layer.
(ii) The 532 nm excitation laser provides much larger SERS enhancement compared to 633 nm excitation laser. The reason is that 532 nm was close to the surface plasmon resonance wavelength of aggregated Ag nanoparticles on graphene.
(iii) The SERS enhancement factor on supported region is bigger than suspended region. The reason is that the interference-enhanced Raman scattering (IERS) effect doesn't exist on suspended region.

Table of Contents
ABSTRACT I
論文摘要 III
List of Figures VI
Chapter 1 Introduction 1
1-1 Introduction 1
1-2 Research Background 2
1-3 Overview of the Thesis 10
Chapter 2 Raman spectroscopy of Free-Standing single-layer graphene 11
2-1 Introduction 11
2-2 The Fabrication Process of the Free-Standing Graphene 12
2-3 Determine the number of layers of graphene 13
2-4 Micro-Raman spectroscopy system 15
2-5 Polarized micro-Raman system 18
2-6 Experimental Result and Discussion 19
2-7 Summary 28
Chapter 3 Surface-Enhanced Raman Spectroscopy of Free- Standing Graphene 29
3-1Introduction 29
3-2 Deposition metal 30
3-3 Scanning electron microscope (SEM) 32
3-4 Experimental Result and Discussion 33
3-5 Summary 56
Chapter 4 Conclusions 57
References 59



[1]A. K. N. Geim, K. S., The rise of graphene, Nat.Mater, 2007.
[2]K. S. G. Novoselov, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A.A. , Electric field effect in atomically thin carbon films, Science, 2004.
[3]G. D. M. A. Pimenta, M. S. Dresselhaus,L. G. Canc¸ado, A. Jorio and R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Physical Chemistry Chemical Physics, vol. 9, p. 1277, 2007.
[4]J. C. M. A. C. Ferrari, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim., Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett. 97, pp. 187401-2, 2006.
[5]J. C. M. A. C. Ferrari, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim., Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett. 97, pp. 187401-3, 2006.
[6]C. J. Hicks, Surface Enhanced Raman Spectroscopy, 2001.
[7]A. C. Gupta, G.; Joshi, P.; Tadigadapa, S.; Eklund,P. C. , Raman scattering from high-frequency phonons in supported n-graphene layer films. , Nano Lett, vol. 6, p. 2667 2673, 2006.
[8]E. W. H. P. Blake, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Making graphene visible, APPLIED PHYSICS LETTERS, 2007.
[9]Y. Y. N. Wang, Z. H.; Yu, T.; Wang, H. M.; Wu, Y. H.;Chen, W.; Wee, A. T. S.; Shen, Z. X. , Raman studies of monolayer graphene: the substrate effect., J. Phys. Chem.C, 2008.
[10]L. A. Mohiuddin T, Nair R, Bonetti A, Savini G, Jalil R,Bonini N, Basko D, Galiotis C, Marzari N, Novoselov K, Geim A, Ferrari A, Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters,and sample orientation, Phys Rev B, pp. 205433-5 2009.
[11]J. R. Maultzch, S.; Thomsen,, Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion, Phys. ReV. B 2004.
[12]D. L. S. Mafra, G.; Malard, L. M.; Elias, D. C.; Brant,J. C.; Plentz, F.; Alves, E. S.; Pimenta, M. A., Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering, Phys. Rev. B 2007.
[13]D. M. Basko, Effect of inelastic collisions on multiphonon Raman scattering in graphene, Phys. Rev. B 2007.
[14]C. R. Thomsen, S., Double Resonant Raman Scattering in Graphite, Phys. ReV. Lett. , 2000.
[15]J. S. Jiang, R.; Samsonidze, G.; Chou, S. G.; Jorio, A.; Dresselhaus,G.; Dresselhaus, M. S., Electron-phonon matrix elements in single-wall carbon nanotubes, Phys. ReV. B, 2005.
[16]H. M. Duhee Yoon, Young-Woo Son,G. Samsonidze,Bae Ho Park,Jin Bae Kim,YoungPak Lee,and Hyeonsik Cheong, Strong Polarization Dependence of Double-Resonant Raman Intensities in Graphene, NANO LETTERS, 2008.
[17]Z. H. N. Y. Y. Wang, and Z. X. Shena,H. M. Wang and Y. H. Wu, Interference enhancement of Raman signal of graphene, APPLIED PHYSICS LETTERS, 2008.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊