跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林茜荷
研究生(外文):Hsi-HoLin
論文名稱:可撓式奈米圖案化模具直接壓印可撓式基板之研究
論文名稱(外文):Direct imprinting on flexible substrate by using flexible nanopatterned mold
指導教授:林俊宏林俊宏引用關係
指導教授(外文):Chun-Hung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:奈米壓印全氟聚醚聚碳酸酯金屬線柵偏振片表面電漿共振感測器
外文關鍵詞:nanoimprintperfluoropolyetherpolycarbonatewire-grid polarizersurface plasmon resonance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一種使用可撓式奈米圖案化模具直接壓印聚碳酸酯 (Polycarbonate, PC) 可撓式基板 (Flexible substrate) 的奈米壓印微影技術,其具有低成本、可彎曲、大面積製作、高解析度等優點。主要探討在各種壓印條件下,不同壓印模具材料對圖案轉移能力之影響,將製程參數最優化,並透過壓印與鍍金屬兩步驟,達成簡單快速製作可撓式金屬線柵偏振片 (Wire-Grid Polarizer, WGP) 與可撓式表面電漿共振 (Surface Plasmon Resonance, SPR) 感測器之技術,不僅省略塗佈光阻、金屬蝕刻及 Lift-off 等步驟,也可減少製作過程中需考慮的實驗參考。
實驗結果顯示,使用二氧化矽/矽 (SiO2/Si) 模具,壓印溫度必須高於 PC 玻璃轉換溫度 (Tg = 150°C) 且在 170°C、壓力 5 bar、模具使用脫模劑時,圖案轉移能力最佳;進一步比較發現聚二甲基矽氧烷 (Polydimethylsiloxane, h-PDMS) 模具使用上述參數,圖案轉移能力很差,PC 基板表面改質也無法改善;而全氟聚醚 (Perfluoropolyether, PFPE) 模具只要 150°C、模具不需使用脫模劑且 PC 基板不需紫外光/臭氧表面改質,圖案轉移能力比 SiO2/Si 模具更理想。在應用方面,使用 SiO2/Si 模具壓印及斜向濺鍍鋁即可成功製作 WGP,其在近紅外光波長有高偏振消光比 (Polarization Extinction Ratio, PER),具良好的濾光效果;使用 PFPE 模具壓印及熱蒸鍍金即為 SPR 感測器,當結構週期或環境折射率增加時,SPR 反射頻譜凹陷 (Dip) 會往紅外光位移,且在 1000 nm 週期線柵對折射率標準液之敏感度 (Sensitivity) 高達 920 nm/RIU,為一良好之 SPR 感測器。
由此論文之實驗結果證實,PFPE 為壓印軟性基板之良好的模具材料,且能夠以簡單的步驟製作高解析度的可撓式奈米圖案元件,PFPE 亦可適用於壓印硬式基板,製程條件與機台之使用範圍較廣泛,具有取代 SiO2/Si 模具之潛力,適合與其他微影技術相互結合應用。

We demonstrated a nanopatterning approach by direct nanoimprinting on flexible polycarbonate (PC) sheets with flexible nanopatterned molds. This method has advantages of low cost, large area fabrication, and high resolution. Different mold materials, including SiO2/Si rigid mold, polydimethylsiloxane (PDMS) flexible mold, and perfluoropolyether (PFPE) flexible mold, were employed to investigate their pattern transfer ability on PC sheets. For a SiO2/Si rigid mold, good pattern transfer ability was obtained by applying a temperature of 170°C and a pressure of 5 bar. PDMS flexible mold was found to have poor pattern transfer ability in all imprinting conditions. For a PFPE flexible mold, great pattern transfer ability was demonstrated at a temperature of only 150°C, which is lower than the applying temperature for a SiO2/Si rigid mold. No anti-sticking treatment was necessary for the PFPE flexible mold.
The approach of direct nanoimprinting on flexible PC sheets was further applied to the fabrications of wire-grid polarizers (WGP) and surface plasmon resonance (SPR) sensors. Simple two-step processes were used to fabricate both optical devices. Nanostructures were obtained by direct imprinting onto PC sheets. No additional imprinted polymer was required in the imprinting step. For WGPs, aluminum (Al) nanowire structures were obtained by an oblique Al sputtering on PC one-dimensional (1D) gratings. The fabricated WGPs had high polarization extinction ratio (PER) in the infrared region. For SPR sensors, gold (Au) nanowire structures were achieved by an Au evaporation in a normal direction on PC 1D gratings. The SPR wavelength was red-shifted with an increment of environmental refractive index. The SPR sensor with a grating pitch of 1000 nm had a high sensitivity of approximately 920 nm/RIU.

摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 論文架構 2
第二章 文獻回顧 3
2.1 奈米壓印微影技術的發展 3
2.1.1 熱壓式奈米壓印技術 3
2.1.2 可撓式基板 5
2.1.3 可撓式模具 7
2.2 研究動機 13
第三章 硬模具壓印可撓式基板 14
3.1實驗材料與儀器 14
3.2 實驗步驟 16
3.2.1 SiO2/Si 模具製備 16
3.2.2 氣壓式奈米壓印技術 18
3.3 製程參數測定及最優化 18
3.3.1 脫模劑之影響 19
3.3.2 壓力之影響 21
3.4可撓式基板應用:金屬線柵偏振片 23
3.4.1 文獻回顧 23
3.4.2 實驗結果與討論 24
3.5結論 33
第四章 軟模具壓印可撓式基板 34
4.1 實驗材料與儀器 34
4.2 實驗步驟 36
4.2.1 h-/184 PDMS模具製備 36
4.2.2 PFPE模具製備 37
4.3 製程參數測定及最優化 38
4.3.1 溫度之影響 43
4.3.2 紫外光∕臭氧基板表面改質之影響 48
4.4可撓式基板應用:表面電漿共振 58
4.4.1 文獻回顧 58
4.4.2 實驗結果與討論 61
4.5 結論 68
第五章 實驗總結與未來展望 69
5.1 實驗總結 69
5.2 未來展望 70
參考文獻 72

1.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Imprint lithography with 25 nanometer resolution, Science 272, 85-87 (1996).
2.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Nanoimprint lithography, J. Vac. Sci. Technol. B 14, 4129-4133 (1996).
3.INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2011 EDITION LITHOGRAPHY, (http://www.itrs.net/Links/2011ITRS/2011Chapters/2011Lithography.pdf).
4.J. B. K. Law, R. T. T. Khoo, B. S. Tan, and H. Y. Low, Selective gold nano-patterning on flexible polymer substrate via concurrent nanoimprinting and nanotransfer printing, Applied Surface Science 258, 748-754 (2011).
5.S. S. Oh, C.-G. Choi, and Y.-S. Kim, Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process, Microelectronic Engineering 87, 2328-2331 (2010).
6.C. W. Wu, J. L. Lee, Y. Lin, and Y. K. Shen, Surface Modification of Plastic Thin Film Using Anodic Aluminum Oxide Template for Nano Imprint, Key Engineering Materials 443, 711-716 (2010).
7.J.-H. Song, H.-J. Lee, S. Lan, N.-K. Lee, G.-A. Lee, T.-J. Lee, S. Choi, and S.-M. Bae, Development of the roll type incremental micro pattern imprint system for large area pattern replication, International Federation for Information Processing 315, 97-104 (2010).
8.D. Xie, H. Zhang, S. Liu, F. Zhu, and S. Tao, Mechanical properties investigation of PMMA, PC, and PS during thermal nanoimprinting, Proc. SPIE 7130, 71301-713006 (2008).
9.H. Hocheng, T. T. Wen, and S. Y. Yang, Replication of Microlens Arrays by Gas-Assisted Hot Embossing, Materials and Manufacturing Processes 23, 261-268 (2008).
10.N. Chaix, C. Gourgon, C. Perret, S. Decossas, S. Landis, V. G. Lambertini, and N. Li Pira, NIL processes and material characterization on transparent substrates for optical applications, Journal of Vacuum Science & Technology B 26, 2174 (2008).
11.H. Mekaru, T. Noguchi, H. Goto, and M. Takahashi, Nanoimprint Lithography Combined with Ultrasonic Vibration on Polycarbonate, Japanese Journal of Applied Physics 46, 6355-6362 (2007).
12.Y. Murakoshi, Micro hot embossing for high-aspect-ratio structure with materials flow enhancement by polymer sheet, Proc. SPIE 5276, 532-539 (2004).
13.C.-y. Chao, and L. J. Guo, Polymer microring resonators fabricated by nanoimprint technique, Journal of Vacuum Science & Technology B 20, 2862 (2002).
14.A. Yokoo, 63-nm-pitch pit pattern fabricated on polycarbonate surface by direct nanoprinting, Japanese Journal of Applied Physics 38, 7268-7271 (1999).
15.H. Mekaru, T. Noguchi, H. Goto, and M. Takahashi, Effect of applying ultrasonic vibration in thermal nanoimprint lithography, Microsystem Technologies 14, 1325-1333 (2008).
16.P.-C. Kao, and S.-Y. Chu, Fabrication of large-scaled organic light emitting devices on the flexible substrates using low-pressure imprinting lithography, IEEE Transactions on Electron Devices 52, 1722-1726 (2005).
17.H. Lee, S. Hong, K. Yang, and K. Choi, Fabrication of nano-sized resist patterns on flexible plastic film using thermal curing nano-imprint lithography, Microelectronic Engineering 83, 323-327 (2006).
18.J. Zhang, C. M. Li, M. B. Chan-Park, Q. Zhou, Y. Gan, F. Qin, B. Ong, and T. Chen, Fabrication of thin-film organic transistor on flexible substrate via ultraviolet transfer embossing, Applied Physics Letters 90, 243502 (2007).
19.M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kim, Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography, Applied Physics Letters 90, 123113 (2007).
20.D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao, and S. A. Solin, Transfer printing methods for the fabrication of flexible organic electronics, Journal of Applied Physics 101, 024503 (2007).
21.N. Y. Lee, and Y. S. Kim, A Simple Imprint Method for Multi-Tiered Polymer Nanopatterning on Large Flexible Substrates Employing a Flexible Mold and Hemispherical PDMS Elastomer, Macromolecular Rapid Communications 28, 1995-2000 (2007).
22.J.-H. Lee, K.-y. Yang, S.-H. Hong, H. Lee, and K.-W. Choi, Fabrication of 70nm narrow metal nanowire structure on flexible PET film by nanoimprint lithography, Microelectronic Engineering 85, 710-713 (2008).
23.S. H. Ahn, and L. J. Guo, Large-area roll-to-roll and roll-to-plate nanoimprint lithography a step toward high-throughput application of continuous nanoimprinting, ACSnano 3, 2304-2310 (2009).
24.J. H. Shin, S. H. Lee, K. J. Byeon, K. S. Han, H. Lee, and K. Tsunozaki, Fabrication of flexible UV nanoimprint mold with fluorinated polymer-coated PET film, Nanoscale research letters 6, 458 (2011).
25.S. Y. Hwang, H. Y. Jung, J.-H. Jeong, and H. Lee, Fabrication of nano-sized metal patterns on flexible polyethylene-terephthalate substrate using bi-layer nanoimprint lithography, Thin Solid Films 517, 4104-4107 (2009).
26.X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, Reversal imprinting by transferring polymer from mold to substrate, Journal of Vacuum Science & Technology B 20, 2872 (2002).
27.U. Haas, H. Gold, A. Haase, G. Jakopic, and B. Stadlober, Submicron pentacene-based organic thin film transistors on flexible substrates, Applied Physics Letters 91, 043511 (2007).
28.H. J. H. Chen, L.-C. Chen, C. Lien, S.-R. Chen, and Y.-L. Ho, Nano-scale metallization of Au on flexible polyimide substrate by reversal imprint and lift-off process, Microelectronic Engineering 85, 1561-1567 (2008).
29.I. Park, S. H. Ko, H. Pan, C. P. Grigoropoulos, A. P. Pisano, J. M. J. Fréchet, E. S. Lee, and J. H. Jeong, Nanoscale Patterning and Electronics on Flexible Substrate by Direct Nanoimprinting of Metallic Nanoparticles, Advanced Materials 20, 489-496 (2008).
30.H.-Y. Tsai, and C.-J. Ting, Optical Characteristics of Moth-Eye Structures on Poly(methyl methacrylate) and Polycarbonate Sheets Fabricated by Thermal Nanoimprinting Processes, Japanese Journal of Applied Physics 48, 06FH19 (2009).
31.C. E. White, Microsystems manufacturing via embossing of photodefinable thermally sacrificial materials, Proc. SPIE 5374, 361-370 (2004).
32.M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, and O. Nalamasu, Organic solid-state lasers with imprinted gratings on plastic substrates, Applied Physics Letters 72, 410 (1998).
33.S. H. Ahn, J.-S. Kim, and L. J. Guo, Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate, Journal of Vacuum Science & Technology B 25, 2388 (2007).
34.L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, Large flexible nanowire grid visible polarizer made by nanoimprint lithography, Applied Physics Letters 90, 063111 (2007).
35.K.-H. Choi, H.-J. Nam, J.-A. Jeong, S.-W. Cho, H.-K. Kim, J.-W. Kang, D.-G. Kim, and W.-J. Cho, Highly flexible and transparent InZnSnOx/Ag/InZnSnOx multilayer electrode for flexible organic light emitting diodes, Applied Physics Letters 92, 223302 (2008).
36.Z. Fan, and A. Javey, Photovoltaics Solar cells on curtains, Nature materials 7, 835-836 (2008).
37.S.-S. Kwon, W.-K. Hong, G. Jo, J. Maeng, T.-W. Kim, S. Song, and T. Lee, Piezoelectric Effect on the Electronic Transport Characteristics of ZnO Nanowire Field-Effect Transistors on Bent Flexible Substrates, Advanced Materials 20, 4557-4562 (2008).
38.D. Wei, H. E. Unalan, D. Han, Q. Zhang, L. Niu, G. Amaratunga, and T. Ryhanen, A solid-state dye-sensitized solar cell based on a novel ionic liquid gel and ZnO nanoparticles on a flexible polymer substrate, Nanotechnology 19, 424006 (2008).
39.M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, and K.-J. Kim, A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate, Solar Energy Materials and Solar Cells 90, 574-581 (2006).
40.H. E. A. Huitema, G. H. Gelinck, J. B. P. H. v. d. Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig, A. J. J. M. v. Breemen, and D. M. d. Leeuw, Plastic transistors in active-matrix displays, Nature 414, 599 (2001).
41.A. Menaker, V. Syritski, J. Reut, A. Öpik, V. Horváth, and R. E. Gyurcsányi, Electrosynthesized Surface-Imprinted Conducting Polymer Microrods for Selective Protein Recognition, Advanced Materials 21, 2271-2275 (2009).
42.Y. Xia, and G. M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28, 153-184 (1998).
43.T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Improved Pattern Transfer in Soft Lithography Using Composite Stamps, Langmuir 18, 5314-5320 (2002).
44.H. Schmid, and B. Michel, Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography, Macromolecules 33, 3042-3049 (2000).
45.H. Kang, J. Lee, J. Park, and H. H. Lee, An improved method of preparing composite poly(dimethylsiloxane) moulds, Nanotechnology 17, 197-200 (2006).
46.T. T. Truong, R. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J. A. Rogers, Soft Lithography Using Acryloxy Perfluoropolyether Composite Stamps, Langmuir 23, 2898-2905 (2007).
47.C.-H. Lin, H.-H. Lin, W.-Y. Chen, and T.-C. Cheng, Direct imprinting on a polycarbonate substrate with a compressed air press for polarizer applications, Microelectronic Engineering 88, 2026-2029 (2011).
48.R. W. Jaszewski, H. Schift, P. Gr6ning, and G. Margaritondo, Properties of thin anti-adhesive films used for the replication of microstructures in polymers, Microelectronic Engineering 35, 381-384 (1997).
49.M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T. G. I. Ling, M. Keil, and L.Montelius, Improving stamps for 10 nm level wafer scale nanoimprint lithography, Microelectronic Engineering 61-62, 441-448 (2002).
50.X. J. Yu, and H. S. Kwok, Optical wire-grid polarizers at oblique angles of incidence, Journal of Applied Physics 93, 4407 (2003).
51.S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography, Nanotechnology 16, 1874-1877 (2005).
52.M. Xu, H. P. Urbach, D. K. G. d. Boer, and H. J. Cornelissen, Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon, Optics Express 13, 2303-2320 (2005).
53.X. Liu, X. Deng, J. Paul Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O. Brien, and J. J. Wang, Large Area, 38 nm Half-Pitch Grating Fabrication by Using Atomic Spacer Lithography from Aluminum Wire Grids, Nano Letters 6, 2723-2727 (2006).
54.C.-M. Chen, and C.-K. Sung, Fabricating metallic wire grating inside a polymeric substrate by insertion nanoimprint, Microelectronic Engineering 87, 872-875 (2010).
55.I. Yamada, J. Nishii, and M. Saito, Modeling, fabrication, and characterization of tungsten silicide wire-grid polarizer in infrared region, Applied Optics 47, 4735-4738 (2008).
56.C.-H. Lin, H.-L. Chen, and F.-H. Ko, Influence of the mask magnification on imaging in hyper-NA lithography, J. Opt. Soc. Am. A 24, 1633-1640 (2007).
57.R. R. Barto, P. V. Bedworth, J. Epstein, S. P. Ermer, R. E. Taylor, and C. W. Frank, Effects of alkyl spacer group length on Vis-NIR absorption behavior in FTC-like guest-host EO polymers, Proc. SPIE 4991, 575-588 (2003).
58.D. K. OWENS, Estimation of the surface free energy of polymers, Journal of Applied Polymer Science 13, 1741-1747 (1969).
59.Fluorolink® PFPE, (http://www.solvayplastics.com/sites/solvayplastics/EN/specialty_polymers/Fluorinated_Fluids/Pages/Fluorolink_PFPE.aspx).
60.M. A. Hopcroft, Member, IEEE, W. D. Nix, and T. W. Kenny, What is the Young's Modulus of Silicon ?, Journal of Microelectromechanical Systems 19, 229-238 (2010).
61.Y. Okada, and Y. Tokumaru, Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K, J. Appl. Phys. 56, 314-320 (1984).
62.C. Genet, and T. W. Ebbesen, Light in tiny holes, Nature 445, 39-46 (2007).
63.J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, Introductory Lecture : Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications, Faraday Discussions 132, 9 (2006).
64.G. A. Baker, and D. S. Moore, Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis, Analytical and bioanalytical chemistry 382, 1751-1770 (2005).
65.Y. Xia, and N. J. Halas, Shape-Controlled Synthesis and Surface Plasmonic Properties of Metallic Nanostructures, N. J. MRS Bull. 30, 338-348 (2005).
66.k. Kneipp, H. Kneipp, and J. Kneipp, Surface-Enhanced Raman Scattering in Local Optical Fields of Silver and Gold NanoaggregatesFrom Single-Molecule Raman Spectroscopy to Ultrasensitive Probing in Live Cells, Acc. Chem. Res. 39, 443-450 (2006).
67.T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391, 667-669 (1998).
68.M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, Periodically structured metallic substrates for SERS, Sensors and Actuators B 51, 285-291 (1998).
69.B. Cui, L. Clime, K. Li, and T. Veres, Fabrication of large area nanoprism arrays and their application for surface enhanced Raman spectroscopy, Nanotechnology 19, 145302 (2008).
70.J. Henzie, J. E. Barton, C. L. Stender, and T. W. Odom, Large-Area Nanoscale Patterning: Chemistry Meets Fabrication, Acc. Chem. Res. 39, 249-257 (2006).
71.J. Henzie, E.-S. Kwak, and T. W. Odom, Mesoscale Metallic Pyramids with Nanoscale Tips, Nano Letters 5, 1199-1202 (2005).
72.J. Henzie, K. L. Shuford, E. Kwak, G. C. Schatz, and T. W. Odom, Manipulating the Optical Properties of Pyramidal Nanoparticle Arrays, J. Phys. Chem. B 39, 249-257 (2006).
73.A. L. Giermann, and C. V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles, Applied Physics Letters 86, 121903 (2005).
74.S. G. Jang, H. K. Yu, D.-G. Choi, and S.-M. Yang, Controlled Fabrication of Hollow Metal Pillar Arrays Using Colloidal Masks, Chem. Mater. 18, 6103-6105 (2006).
75.P. M. Tessier, O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff, and E. W. Kaler, Assembly of Gold Nanostructured Films Templated by Colloidal Crystals and Use in Surface-Enhanced Raman Spectroscopy, J. Am. Chem. Soc. 122, 9554-9555 (2000).
76.S. Mahajan, M. Abdelsalam, Y. Suguwara, S. Cintra, A. Russell, J. Baumberg, and P. Bartlett, Tuning plasmons on nano-structured substrates for NIR-SERS, Physical chemistry chemical physics 9, 104-109 (2007).
77.K. A. Willets, and R. P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annual Review of Physical Chemistry 58, 267-297 (2007).
78.W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424, 824-830 (2003).
79.P.-T. Chou, The Influence of Subwavelength Grating Profiles to Surface Plasmon Resonance Development of Nanowriter Optical Head and Related Applications, (National Cheng Kung University, 2005).
80.C. C. Yu, K. H. Ho, H. L. Chen, S. Y. Chuang, S. C. Tseng, and W. F. Su, Using the nanoimprint-in-metal method to prepare corrugated metal structures for plasmonic biosensors through both surface plasmon resonance and index-matching effects, Biosensors & bioelectronics 33, 267-273 (2012).
81.C.-C. Lee, The Influence Of Ambient Conditions Change On The Optical Behaviors Of Surface Plasmon Resonance Biosensor, (National Cheng Kung University, 2002).



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top