跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/27 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊孟潔
研究生(外文):Meng-ChiehYang
論文名稱:氮化銦鎵系列太陽能電池及發光二極體之設計、製作與分析
論文名稱(外文):Design, Fabrication and Characterization for InGaN/Sapphire based Solar Cells and Light Emitting Diodes
指導教授:許進恭
指導教授(外文):Jinn-Kong Sheu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:100
中文關鍵詞:氮化鎵p-型氮化銦鎵超晶格結構二維電洞氣太陽能電池發光二極體
外文關鍵詞:GaNp-InGaNsuperlattice2DHGsolar celllight emitting diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文中使用有機金屬化學氣相沉積(MOCVD)在(0001)面圖形化藍寶石基板上成長氮化銦鎵(InGaN)系列磊晶結構。其中包含七個不同的結構設計,包括以塊材(bulk) p型氮化銦鎵為p型區的結構A,以三層銦濃度漸變的p型氮化銦鎵為p型區的結構B,氮化鎵/氮化銦鎵超晶格(superlattice)吸收層的結構C,氮化鋁鎵/氮化銦鎵超晶格吸收層的結構D,厚度更薄為3nm/2.5nm的氮化鋁鎵/氮化銦鎵超晶格吸收層的結構E,在氮化鋁鎵/氮化銦鎵超晶格吸收層上方插入30nm的p型氮化銦鎵插入層的結構F以及在氮化鋁鎵/氮化銦鎵超晶格吸收層上方插入三層銦濃度漸變的10nm的p型氮化銦鎵插入層的結構G。我們探討了這七個結構應用於LED和太陽能電池時的特性。

本實驗分為四個主題。第一個主題是結構A和B之間的比較,以討論在結構B中可能形成的二維電洞氣(2DHG)的影響。結果顯示在結構B中有較低的串聯電阻(RS)和稍高的光輸出功率。第二個主題是結構C和D之間的比較以討論極化效應的影響。結果顯示結構D的光電流及填充因子(fill factor)下降、串聯電阻顯著增加因此效率較低。第三個主題是結構A和C之間的比較以觀察不同的勢壘(barrier)厚度的影響。在結構C中串聯電阻顯著減少,光電流和填充因子增加,因此太陽能電池效率提高了20.6%。第四個主題是結構E、F和G之間的比較,有p型氮化銦鎵插入層的結構F和G由於較好的載子注入效率,其光輸出功率顯著增加了42.6%。

In this dissertation, the InGaN/sapphire-based devices were epitaxially grown on (0001) pattern sapphire substrates by the metal-organic chemical vapor deposition epitaxy reactor. There were seven different InGaN-based structure designs, including the structure A with bulk p-InGaN p-type region, the structure B with three-step graded p-InGaN p-type region, the structure C with GaN/InGaN superlattice absorption layers, structure D with AlGaN/InGaN superlattice absorption layers, structure E with AlGaN/InGaN superlattice absorption layers and the thickness is 3nm/2.5nm, structure F is AlGaN/InGaN superlattice based device with 30nm p-InGaN insertion layer and structure G is AlGaN/InGaN superlattice based device with three 10nm graded p-InGaN insertion layers. These seven devices were fabricated and their properties applied on LED and solar cell were expounded.

The experiments were divided into four topics. The first topic is the comparison between structure A and B in order to discuss the influence of possible formation of 2DHG induced by graded p-InGaN. The results showed lower Rs and slightly higher output power in structure B. The second topic is the comparison between structure C and D to discuss the polarization effect. The JSC and VOC decreased and the RS increased markedly in structure D, thus the lower efficiency. The third topic is the comparison between structure A and C to observe the influence of different barrier thickness in absorption layers. In structure C, the RS were much reduced and the JSC and FF were increased and consequentially enhanced the efficiency for 20.6%. The fourth topic is the comparison between structure E, F and G. The structure F and G with p-InGaN insertion layers showed pronounced increase in output power with 42.6% enhancement, due to better carrier injection efficiency.

摘要(Abstract in Chinese)..................................I
Abstract.................................................III
Acknowledgement............................................V
Contents..................................................VI
Table Captions............................................IX
Figure Captions...........................................XI
Chapter 1 Introduction....................................1
1.1 Research Background................................1
1.1.1 The Urgent Demand of Clean Energy and Energy Saving1
1.1.2 Brief History of the Solar Cell....................1
1.1.3 Brief History of the Light Emitting Diode..........3
1.2 Research Motive and Purpose........................5
Reference in Chapter 1.....................................8
Chapter 2 Basic Theory...................................10
2.1 Solar Cell Theory.................................10
2.2 Solar Cell Photovoltaic Physics...................10
2.3 Solar Cell Equivalent Circuit Model...............15
2.4 Solar Cell Device Factor Analysis.................17
2.5 Solar Cell Device Measurement.....................23
2.6 Light Emitting Diode Photovoltaic Theory..........27
2.7 Light Emitting Diode Light Extraction Efficiency..29
2.7.1 Internal Quantum Efficiency.......................29
2.7.2 Light Extraction Efficiency.......................30
2.7.3 External Quantum Efficiency and power efficiency..31
2.8 Light Emitting Diode Device Voltage...............32
2.9 Efficiency Droop..................................33
Reference in Chapter 2....................................40
Chapter 3 Experimental Fabrication Process...............42
3.1 Sample Cleaning...................................42
3.2 Transparent Conductive Layer Etching Process......43
3.3 Inductively-coupled Plasma (ICP) Etching Process..45
3.4 Furnace Annealing Process.........................46
3.5 Metal Electrode Deposition Process................46
Reference in Chapter 3....................................48
Chapter 4 Experiment Results and Discussion..............49
4.1 Device With Graded p-InGaN........................49
4.1.1 Graded p-InGaN Applied on Light Emitting Diode....49
4.1.2 Graded p-InGaN Applied on Solar Cell..............52
4.2 Deviced with AlGaN barrier and GaN barrier........53
4.2.1 AlGaN barrier and GaN barrier Applied on Light Emitting Diode............................................53
4.2.2 AlGaN barrier and GaN barrier Applied on Solar Cells ..................................................55
4.3 Device with Different Barrier Thickness...........57
4.3.1 Different Barrier Thickness Applied on Light Emitting Diodes...........................................57
4.3.2 Different Barrier Thickness Applied on Solar Cells59
4.4 Device With Graded p-InGaN Inserted Layers........60
4.4.1 Graded p-InGaN Inserted Layers Applied on Light Emitting Diodes...........................................60
4.4.2 Graded p-InGaN Inserted Layers Applied on Solar Cells ..................................................62
Reference in Chapter 4....................................95
Chapter 5 Conclusions and Future Work....................97
5.1 Conclusions.......................................97
5.2 Future Work......................................100



[1] Lewis M. Fraas, Larry D. Partain, “Solar Cells and Their Applications, John Wiley & Sons, 2010.
[2] Nelson, Jenny, “The Physics of Solar Cells, Imperial College Press, 2003.
[3] E. Fred Schubert, Light-Emitting Diodes (Second Edition), Cambridge University Press, 2006.
[4] Tzong-Liang Tsai, Chih-Sung Chang, Tzer-Peng Chen, and Kuo-Hsin Huang, Effect of Barrier Thickness and Barrier Doping on the Properties of InGaN/GaN Multiple-Quantum-Well Structure Light Emitting Diode, phys. stat. sol. (c), vol. 0, no. 1, pp. 263-266, 2002.
[5] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, S. M. Wang, and B. R. Huang, Nitride-Based LEDs With p-InGaN Capping Layer, IEEE Trans. Electron. Devices., vol. 50, no. 12, pp. 2567-2569, 2003.
[6] P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin and W. C. Mitchel, Polarization-enhanced Mg doping of AlGaN/GaN superlattices, Appl. Phys. Lett., vol. 75, no. 16, pp. 2444-2446, 1999.
[7] H. Hung, S. J. Young, S. J. Chang, InGaN/GaN MQW LED with 2DHG Structure, 215th ECS meeting in San Francisco, CA, 2009.
[8] P. Kung, C. J. Sun, A. Saxler, H. Ohsato and M. Razeghi, “Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates, J. Appl. Phys., vol. 75, no. 9, pp. 4515-4519, 1994.
[9] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishira, L. A. Coldren and S. P. DenBaars, “Effective band gap inhomogenety and piezoelectric field in InGaN/GaN multiquantum well structures, Appl. Phys. Lett., vol. 73, no. 14, pp. 2006-2008, 1998.
[10] C. C. Yang, J. K. Sheu, X. W. Liang, M. S. Huang, M. L. Lee, K. H. Chang, S. J. Tu, F. W. Huang, and W. C. Lai, “Enhancement of The Conversion Efficiency of GaN-Based Photovoltaic Devices with AlGaN/InGaN Absorption Layers, Appl. Phys. Lett., vol. 97, no. 2, pp. 021113, 2010.
[11] M. T. Chiang, Effect of Series Resistance on InGaN/Sapphire-based Solar Cells, master thesis of National Cheng Kung University, 2011.

[12] Deutsche Gesellschaft für Sonnenenergie, Planning & Installing Photovoltaic Systems: a guide for installers, architects and engineers, Earthscan, 2008
[13] M. S. Huang, “Improved Conversion Efficiency of InGaN/Sapphire-based Solar Cells, Master thesis of National Cheng Kung University, 2010.
[14] Antonio Luque, Steven Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, 2003.
[15] Nelson, Jenny, “The Physics of Solar Cells, Imperial College Press, 2003.
[16] R. de L. Kronig and W. G. Penney, Quantum Mechanics of Electrons in Crystal Lattices, Proc. Royal Soc. London., vol. 130, no. 814, pp. 449, 1931.
[17] Hadis Morkoç, “Handbook of Nitride Semiconductors and Devices, Wiley-VCH, 2008.
[18] David A. B. Miller, Optical Physics of Quantum Wells, in Quantum Dynamics of Simple Systems, Rm. 4B-401, AT&T Bell Laboratories Holmdel, NJ07733-3030USA, 1996.
[19] E. F. Schubert, “Quantum wells (QWs), Rensselaer Polytechnic Institute, 2003.
[20] M. T. Chiang, Effect of Series Resistance on InGaN/Sapphire-based Solar Cells, master thesis of National Cheng Kung University, 2011.
[21] SORCE Total Solar Irradiance, LISIRD, Laboratory for Atmospheric & Space Physics, the University of Colorado, 2009.
[22] ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface, 2008.
[23] C. C. Yang, Design, Fabrication and Characterization for InXGa1-XN-based Photovoltaics, doctoral thesis of National Cheng Kung University, 2011.
[24] W. C. Lin, Light output power enhancement of GaN-based Light Emitting Diodes with sidewall undercut and different depth of pattern sapphire substrates, doctoral thesis of National Cheng Kung University, 2010.
[25] E. Fred Schubert, Light-Emitting Diodes (Second Edition), Cambridge University Press, 2006.
[26] K. A. Bulashevich and S. Yu. Karpov, “Is Auger recombination responsible for the efficiency rollover in III-nitride light-emitting diodes?, Phys. Stat. Sol. (c), vol. 5, pp. 2066–2069, 2008.
[27] A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich,Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, “Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs, Semiconductors, vol. 40, pp. 605–610, 2006.
[28] M.-Y. Ryua, J.H. Songb, C.Q. Chenc, and M. A. Khanc, “Indium incorporation effects on luminescence mechanisms in quaternary AlInGaN layers, Solid. State. Commun., vol. 142, pp. 569–572, 2007.
[29] C. C. Yang, Design, Fabrication and Characterization for InXGa1-XN-based Photovoltaics, doctoral thesis of National Cheng Kung University, 2011.
[30] H. Hung, S. J. Young, S. J. Chang, “InGaN/GaN MQW LED with 2DHG structure, 215th ECS meeting in San Francisco, CA, 2009.
[31] P. Kung, C. J. Sun, A. Saxler, H. Ohsato and M. Razeghi, “Crystallography of Epitaxial Growth of Wurtzite-type Thin Films on Ssapphire Substrates, J. Appl. Phys. ,vol. 75, no. 9, pp. 4515-4519, 1994.
[32] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, M. Razeghi and K. Haritos, “A Crystallography Model of (00-1) Aluminum Nitride Epitaxial Thin Film Growth on (00-1)Sapphire Substrate, J. Appl. Phys., vol. 75, no. 8, pp. 3964-3967, 1994.
[33] G. Traetta, A. Di Carlo, A. Reale, P. Lugli, M. Lomascolo, A. Passaseo ,R. Cingolani, A. Bonfiglio, M. Berti, E. Napolitani, M. Natali, S.K. Sinha,A.V. Drigo, Charge storage and screening of the internal field in GaN/AlGaN quantum wells, J. Cryst. Growth., vol. 230, pp. 492-496, 2001.
[34] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, 400-nm InGaN-GaN and InGaN-AlGaN Multiquantum Well Light-Emitting Diodes, IEEE. J. Quantum Electron., vol. 8, no. 4, pp.744-748, 2002.
[35] T. L. Tsai, C. S. Chang, T. P. Chen, and K. H. Huang, Effect of Barrier Thickness and Barrier Doping on the Properties of InGaN/GaN Multiple-Quantum-Well Structure Light Emitting Diode, phys. stat. sol. (c), vol. 0, no. 1, pp. 263-266, 2002.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊