跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 20:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅凱鴻
研究生(外文):Kai-HongLuo
論文名稱:石墨烯奈米基板上的螢光光譜分析
論文名稱(外文):The Fluorescence Analysis on Graphene-Based Nano Plate
指導教授:崔祥辰
指導教授(外文):Hsiang-Chen Chui
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:58
中文關鍵詞:石墨烯螢光焠火氫端石墨烯
外文關鍵詞:graphenefluorescencequenchinghydrogen-terminated graphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
研究關於羅丹明6G在單層石墨烯的基板上的螢光焠火效應(Quenching Effect),並在石墨烯底下先熱蒸鍍上一層銀,並研討是銀跟石墨烯影響羅丹明6G的螢光變化。而石墨烯是利用化學氣相沉積(Chemical Vapor Deposition, CVD)所合成的,並利用溼式轉移法轉移到氧化矽的基板上,另外在部分石墨烯所覆蓋的位置以氫電漿處理,這個已經做過氫電漿處理的石墨烯可以叫做氫端石墨烯(Hydrogen-Terminated Graphene),這種經過處理的石墨烯和原來的石墨烯有些許相似,但是在碳與碳之間的π鍵被打斷並且以σ鍵接上氫原子,一個π鍵轉換成兩個接氫的σ鍵,所以在於石墨烯的導電度變低,因為它的導電性跟電子可否在石墨烯平面傳遞有關,而π鍵的存在可以使碳與碳之間有多的電子,並且在石墨烯的特殊鍵節結構下可以使π鍵轉移產生電子軌域移動,因而產生導電性,然而氫端石墨烯可以產生出極薄的絕緣體材料,然而我們討論在有做過氫電漿處理的石墨烯對螢光焠火效應的影響。
我們量測了羅丹明6G在六種不同的基板上所產生的螢光訊號;氧化矽/矽基板、銀/氧化矽/矽基板、石墨烯/氧化矽/矽基板、石墨烯/銀/氧化矽/矽基板、氫端石墨烯/氧化矽/矽基板和氫端石墨烯/銀/氧化矽/矽基板。
我們發現氫端石墨烯有減緩57%的螢光焠火效應到石墨烯上。,另外如果銀的樣本,氫端石墨烯可以減緩75%的螢光焠火效應石墨烯和銀上。

We reported the quenching effect of rhodamine 6G appeared on the single atom thickness of graphene flake over the silver film or not. The silver film was
deposited on silicon-dioxide/silicon substrate. And then, the monolayer graphene flake was transferred to the silver/ silicon-dioxide/silicon substrate by chemical vapor deposition, and was treated with hydrogen plasma. The graphene treated with hydrogen plasma was called the hydrogen-terminated graphene. It maybe was similar to pristine graphene. But the characteristics of graphene and hydrogen-terminated graphene were different. The π bonds (C=C) of the hydrogen-terminated graphene were destroyed by hydrogen plasma, so the resistance of hydrogen-terminated graphene was higher than the resistance of pristine graphene.[4] Then, we used the graphene treated with hydrogen plasma to discuss the energy transfer of quenching effect.
We measured rhodamine 6G on six substrates, for example: silicon-dioxide/silicon, silver/silicon-dioxide/silicon, graphene/ silicon -dioxide /silicon, graphene/silver/silicon -dioxide/silicon, hydrogen-terminated graphene/silicon -dioxide/silicon and hydrogen-terminated graphene/silver/silicon -dioxide/silicon. Then, the quenching effect was obviously resisted from graphene and silver by hydrogen-terminated graphene. The quenching effect was reduced about 57 percent on the graphene after hydrogen plasma treatment. Moreover, it was reduced about 75 percent on hydrogen-terminated graphene covering silver film. The mode of energy transfer ways was constructed to explain the phenomenon.

Abstract I
論文摘要 II
致謝 III
Table of Contents IV
List of Figures VI

Chapter 1 Introduction 1
1-1 Research Motive 1
1-2 Literature review 2
Chapter 2 Theory and Experiment 7
2-1 Rhodamine 6G 7
2-2 Graphene 8
2-2.1 CVD graphene 9
2-2.2 Hydrogen-Terminated Graphene 11
2-3 Spectroscopy 11
2-3.1 Raman Spectroscopy 12
2-3.2 Fluorescence Spectroscopy 14
2-4 The simple mode of the energy transfer 16
2-4.1 Förster Resonance Energy Transfer 17
2-4.2 Dexter energy transfer 20
2-4.3 Radiative transfer 22
2-4.4 Surface energy transfer 24
Chapter3 Experiment Process 25
3-1 The Fabrication of sample 25
3-2 The Measuring of Sample 27
Chapter4 Result and Discussion 29
4-1 OM and SEM 29
4-2 Raman Spectra and SERS of Graphene and Hydrogen-terminated Graphene 34
4-3 Fluorescence Spectra and SERS of Rhodamin 6G on Graphene and Hydrogen-terminated Graphene substrate 37
4-4 Discussion 43
Chapter 5 Conclusion 50
5-1 Summary 50
5-2 Future Improvements 52
Reference 53

Reference
[1]L. M. Xie, X. Ling, Y. Fang, J. Zhang, and Z. F. Liu, Jul 29 2009, Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy, Journal of the American Chemical Society, vol. 131, pp. 9890-+.
[2]X. Ling, L. M. Xie, Y. Fang, H. Xu, H. L. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. F. Liu, Feb 2010, Can Graphene be used as a Substrate for Raman Enhancement?, Nano Letters, vol. 10, pp. 553-561, Feb 2010.
[3]T. Gokus, R. R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, Dec 2009, Making Graphene Luminescent by Oxygen Plasma Treatment, Acs Nano, vol. 3, pp. 3963-3968.
[4]C. Y. Liu, K. C. Liang, W. L. Chen, C. H. Tu, C. P. Liu, and Y. Tzeng, Aug 29 2011, Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy, Optics Express, vol. 19, pp. 17092-17098.
[5]Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, Feb 10 2011, Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy, Journal of Physical Chemistry C, vol. 115, pp. 1422-1427.
[6]T. Sen, S. Sadhu, and A. Patra, Jul 23 2007, Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler, Applied Physics Letters, vol. 91.
[7]T. Sen and A. Patra, Mar 6 2008, Resonance energy transfer from rhodamine 6G to gold nanoparticles by steady-state and time-resolved spectroscopy, Journal of Physical Chemistry C, vol. 112, pp. 3216-3222.
[8]Y. Chen, M. B. O'Donoghue, Y. F. Huang, H. Z. Kang, J. A. Phillips, X. L. Chen, M. C. Estevez, C. Y. J. Yang, and W. H. Tan, Nov 24 2010, A Surface Energy Transfer Nanoruler for Measuring Binding Site Distances on Live Cell Surfaces, Journal of the American Chemical Society, vol. 132, pp. 16559-16570.
[9]C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, Mar 9 2005, Nanometal surface energy transfer in optical rulers, breaking the FRET barrier, Journal of the American Chemical Society, vol. 127, pp. 3115-3119.
[10]L. W. H. F. J. Duarte, 1990, Dye Laser Principles Academic.
[11]Life technologies.
[12]A. K. Geim and K. S. Novoselov, Mar 2007, The rise of graphene, Nature Materials, vol. 6, pp. 183-191.
[13]X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Aug 2008, Approaching ballistic transport in suspended graphene, Nature Nanotechnology, vol. 3, pp. 491-495.
[14]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Jun 2008, Ultrahigh electron mobility in suspended graphene, Solid State Communications, vol. 146, pp. 351-355.
[15]Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nov 10 2005, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, vol. 438, pp. 201-204.
[16]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Oct 22 2004, Electric field effect in atomically thin carbon films, Science, vol. 306, pp. 666-669.
[17]A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim Nov 3 2006, Raman spectrum of graphene and graphene layers, Physical Review Letters, vol. 97,.
[18]M. Hofmann, 2008, In-Situ Sample Rotation as a Tool to Understand Chemical Vapor Deposition Growth of Long Aligned Carbon Nanotubes.
[19]X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Jun 5 2009, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, vol. 324, pp. 1312-1314.
[20]X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Dec 2009, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Letters, vol. 9, pp. 4359-4363.
[21]B. M. Bussian and C. Sander, May 16 1989, How to Determine Protein Secondary Structure in Solution by Raman-Spectroscopy - Practical Guide and Test Case Dnase-I, Biochemistry, vol. 28, pp. 4271-4277.
[22]R. K. Khanna, 1981, Rayleigh Streeung und Raman Effekt, pp.45.
[23]D. A. S. Analysis F.James Holler,2006, Principles Of Instrumental Analysis .
[24]O'Reilly, 1975 ' Journal of Criminal Justice Education', pp.49.
[25]D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, 1976, Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics, Biophysical Journal, vol. 16, pp. 1055-1069.
[26]B. L. Sprague, R. L. Pego, D. A. Stavreva, and J. G. McNally, Jun 2004, Analysis of binding reactions by fluorescence recovery after photobleaching, Biophysical Journal, vol. 86, pp. 3473-3495.
[27]R. S. Swathi and K. L. Sebastian, Jun 21 2007, Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle, Journal of Chemical Physics, vol. 126.
[28]R. S. Swathi and K. L. Sebastian, Aug 7 2008, Resonance energy transfer from a dye molecule to graphene, Journal of Chemical Physics, vol. 129.
[29]R. S. Swathi and K. L. Sebastian, Feb 28 2009, Long range resonance energy transfer from a dye molecule to graphene has (distance)(-4) dependence, Journal of Chemical Physics, vol. 130.
[30]Filipesc.N, J. R. Demember, and F. L. Minn, 1969, Intramolecular Triplet-Triplet Energy Transfer between Nonconjugated Chromophores with Fixed Orientation, Journal of the American Chemical Society, vol. 91, pp. 4169-&.
[31]S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, May 14 2009, White organic light-emitting diodes with fluorescent tube efficiency, Nature, vol. 459, pp. 234-U116.
[32]A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, and F. Meinardi, Nov 2008, Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold, Physical Review B, vol. 78.
[33]F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, and X. G. Liu, Dec 2011, Tuning upconversion through energy migration in core-shell nanoparticles, Nature Materials, vol. 10, pp. 968-973.
[34]D.-P. T. Huai-Yi Xie, 2010, The Theoretical Analysis of Energy Transfer Rate Near Films., pp.1-4.
[35]v. d. W. V. a. Radii, 1964, van der Waals Volumes and Radii, J. Phys. Chem.
[36]F. S. W. Alessandro Esposito, 2004, Microscopy, Current Protocols in Cell Biology.
[37]A. W. C. Wolfgang Becker, Jr, J.P. Toennies, W. Zinth, 2005, Advanced Time-Correlated Single Photon Counting Techniques Chemical Physics.
[38]D. L. Dexter, 1953, A theory of sensitized luminescence in solids, J. Chem. Phys.
[39]A. Peraiah and M. S. Rao, Jul 2002, Radiative transfer in the distorted and irradiated atmospheres of close binary components, Astronomy & Astrophysics, vol. 389, pp. 945-952.
[40]O. W. Kolling, 1976, Red Shift for Solvatochromic Indicators as a Measure of Solvent Basicity in Polar Aprotic Media, Analytical Chemistry, vol. 48, pp. 884-886.
[41]A. M. Michaels, M. Nirmal, and L. E. Brus, Nov 3 1999, Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals, Journal of the American Chemical Society, vol. 121, pp. 9932-9939.
[42]X. Ling and J. Zhang, Feb 17 2011, Interference Phenomenon in Graphene-Enhanced Raman Scattering, Journal of Physical Chemistry C, vol. 115, pp. 2835-2840.
[43]R. S. Swathi and K. L. Sebastian, Mar 14 2010, Excitation energy transfer from a fluorophore to single-walled carbon nanotubes, Journal of Chemical Physics, vol. 132.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top